Objective: To determine the ability of uVDBP to discern SRNS from steroid-sensitive nephrotic syndrome (SSNS) in Iraqi children. Materials and Methods: This cross-sectional study enrolled children with SRNS (n=31) and SSNS (n=32) from the pediatric nephrology clinic of Babylon Hospital for Maternity and Pediatrics over three months. Patients' characteristics in terms of demographics, clinical data, and urinary investigations were collected. Quantitative analysis of uVDBP levels was undertaken via a commercially available ELISA kit. Results: The median uVDBP values were significantly higher (p-value<0.001) in the SRNS group (median=10.26, IQR=5.91 μg/mL) than in the SSNS group (median=0.953, IQR=4.12 μg/mL). A negative correlation was noted between uVDBP levels and estimated glomerular filtration rate (eGFR) (Spearman's rho coefficient= − 0.494, p=0.001). Nevertheless, the rise in uVDBP concentrations was still considerable in children with SRNS whose eGFR measurements were above 60 mL/min/1.73 m2. The study revealed a good discriminatory power for uVDBP as a predicting parameter to distinguish SRNS from SSNS (AUC= 0.909, p<0.0001. The optimal uVDBP cut-off value of 5.781 μg/mL was associated with a sensitivity of 0.839 and specificity of 0.844 to differentiate SRNS from SSNS. Conclusion: Considering its significant discriminatory strength, uVDBP can be considered as a potential marker to noninvasively distinguish children with SRNS from those with SSNS.
Twelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.
The current study presents the simulative study and evaluation of MANET mobility models over UDP traffic pattern to determine the effects of this traffic pattern on mobility models in MANET which is implemented in NS-2.35 according to various performance metri (Throughput, AED (Average End-2-end Delay), drop packets, NRL (Normalize Routing Load) and PDF (Packet Delivery Fraction)) with various parameters such as different velocities, different environment areas, different number of nodes, different traffic rates, different traffic sources, different pause times and different simulation times . A routing protocol.…was exploited AODV(Adhoc On demand Distance Vector) and RWP (Random Waypoint), GMM (Gauss Markov Model), RPGM (Refere
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreDue to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ra
... Show MoreIn this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show MoreThe dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show More