This study investigates the impacts of climate change (CC) on the emergence and proliferation of fungal pathogens, with a particular focus on global food security and the potential of medicinal plants and their by-products as sustainable mitigation strategies. Through a systematic literature review of articles published up to 2024, we analyze how CC exacerbates the spread and severity of fungal diseases in crops, leading to significant agricultural losses and threats to food availability. The findings highlight that, alongside conventional approaches such as genetic resistance and precision farming, bioactive compounds derived from medicinal plants and their by-products offer promising, eco-friendly alternatives for the management of fungal pathogens. Recent advances in the application of plant extracts, essential oils, and other natural products demonstrate their efficacy in suppressing fungal infections and enhancing crop resilience under changing climatic conditions. Furthermore, the integration of these natural solutions into sustainable agricultural practices can reduce reliance on synthetic fungicides, thereby supporting ecosystem preservation. Policy recommendations are proposed to promote research, development, and adoption of medicinal plant-based interventions as part of comprehensive strategies to safeguard food security in the context of CC. The study underscores the urgent need for interdisciplinary and innovative approaches, including the utilization of medicinal plants and their derivatives, to address the rising challenges posed by fungal pathogens in a warming world.
This work studied the facilitation of the transportation of Sharqi Baghdad heavy crude oil characterized with high viscosity 51.6 cSt at 40 °C, low API 18.8, and high asphaltenes content 7.1 wt.%, by reducing its viscosity from break down asphaltene agglomerates using different types of hydrocarbon and oxygenated polar solvents such as toluene, methanol, mix xylenes, and reformate. The best results are obtained by using methanol because it owns a high efficiency to reduce viscosity of crude oil to 21.1 cSt at 40 °C. Toluene, xylenes and reformate decreased viscosity to 25.3, 27.5 and 28,4 cSt at 40 °C, respectively. Asphaltenes content decreased to 4.2 wt. % by using toluene at 110 °C. And best improvement in API of the heavy crude o
... Show More
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
In this work, the Whittaker wave functions were used to study the nuclear density distributions and elastic electron scattering charge form factors for proton-rich nuclei and their corresponding stable nuclei (10,8B, 13,9C, 14,12N and 19,17F). The parameters of Whittaker’s basis were fixed to generate the experimental values of available size radii. The Whittaker basis was connected to harmonic-oscillator basis through boundary condition at match point. The nuclear shell model was opted with pure configuration for all studied nuclei to compute aforementioned studied quantities except 10
Tillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
In this work, optical system with different aperture shapes (circular, square, elliptical and triangle aperture) has been used for efficiency evaluation when the system involved moving factor in ideal case (aberration free). The optical system evaluate far moving object, therefore the image forming at image plane due to point spread function (image formula of incoherently illuminated point object). A mathematical treatment has been used to getting results by Gaussian numerical calculations method. The results show priority of circular aperture when optical system that submits of moving factor.
Neuro-ophthalmic disorders are often documented individually for each illness, with little data available on their overall incidence and pattern. The overall incidence of neuro-ophthalmic illnesses in Iraq is still not recorded. This study aimed to evaluate the clinical, demographic, and etiological features of patients seeking consultation at an Iraqi neuro-ophthalmology clinic. A prospective cross-sectional observational research was conducted at the Janna Ophthalmic Center in Baghdad, Iraq. The center serves a diverse patient population from various governorates. All newly diagnosed patients with neuro-ophthalmic disorders who visited the neuro-ophthalmological clinic, regardless of gender or age group, were included. The neuro-ophthalmo
... Show MoreThis study investigates the implementation of Taguchi design in the estimation of minimum corrosion rate of mild-steel in cooling tower that uses saline solution of different concentration. The experiments were set on the basis of Taguchi’s L16 orthogonal array. The runs were carried out under different condition such as inlet concentration of saline solution, temperature, and flowrate. The Signal-to- Noise ratio and ANOVA analysis were used to define the impact of cooling tower working conditions on the corrosion rate. A regression had been modelled and optimized to identify the optimum level for the working parameters that had been founded to be 13%NaCl, 35ᴼC, and 1 l/min. Also a confirmation run to establish the p
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application