Background: The synthesis and characterization of novel liquid crystalline compounds have garnered signi|cant attention due to their potential applications in biomedical sciences, including drug delivery systems, biosensing, and diagnostic tools. This study focuses on synthesizing and characterizing new thiazolothiadiazole-based liquid crystals and evaluating their mesophase properties. Methods: A series of novel compounds containing 5H-thiazolo[4,3−b][1,3,4] thiadiazole units were synthesized via multi-step chemical reactions. The synthesis involved the reaction of chloroethyl acetate with 4−hydroxybenzaldehyde to yield an aldehyde intermediate, followed by subsequent transformations using hydrazine hydrate, ethylacetoacetate, and 1,2−dichloromethane or 1,2−dibromoethane. Hydrolysis of an ester intermediate resulted in a carboxylic acid derivative, which was further reacted with 2−phenylenediamine to obtain the |nal product. Characterization: The molecular structures of the synthesized compounds were con|rmed using Fourier Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy. Liquid crystal properties were assessed through Diyerential Scanning Calorimetry (DSC) and Polarized Optical Microscopy (POM) to evaluate phase transitions and mesophase characteristics. Results: The study revealed that compound [V]2 exhibited dimorphic behavior, forming smectic C (SmC) and nematic phases, while compounds [V]1, [VI], and [VII] displayed nematic mesophases. The presence of intermolecular hydrogen bonding in compound [VI] extended the rigid-rod moiety, enhancing terminal molecular interactions and stabilizing the nematic liquid crystal phase. Conclusion: The synthesized thiazolothiadiazole-based liquid crystalline compounds demonstrate promising mesophase behaviors, which could be further explored for biomedical applications such as biosensing, diagnostic imaging, and targeted drug delivery systems. Their structural properties and phase behavior suggest potential use in pathology-related molecular diagnostics and biomaterial research
Three Schiff bases from Benzaldehyde and Salicylaldehyde have been synthesized (A, 1and 2) and two of them (1and 2) have been tested for anti-inflammatory activity. The p-aminobenzene sulfonamide has been synthesized from acetanilide through the addition of excess chlorosulfonic acid then concentrated ammonia solution; Schiff base of this derivative (2) exhibited good level of activity against egg-white induced edema in rat hind paw, while the other tested derivative exhibited no activity.
Key words: Schiff bases, sulfonamide derivatives, salicylaldehyde
The development of new cephalosporins with improved activity against resistant microbes, such as, MRSA (methicillin resistant Staph. aureus), P. aeruginosa, is of high potential. Chemical synthesis of two new series of thiadiazole linked to cysteine (series 1) and cephalosporins containing thiadiazole linked to cysteine through disulfide bond (series 2) were achieved. The chemical structures of the synthesized compounds were confirmed using spectral (FT-IR, 1H-NMR) and elemental microanalysis. The incorporation of privileged chemical moieties, such as, thiadiazole, Schiff base, cysteine and sulfonamide, has been found to have great contribution to the antimicrobial activities. Compounds of series 1 (1
... Show MoreObjectives: Two derivatives of cephalexin were synthesized by reaction with isatin-glycine Schiff base and bromoisatin-glycine Schiff base separately. Methods: Cephalexin was linked through the amine group to isatin glycine and bromoisatin glycine Schiff bases by amide bond formation. Results: These derivatives were characterized by FT-IR, H-NMR, elemental CHN analysis and then tested for their antimicrobial activity compared to cephalexin against gram-positive, gram-negative bacteria and Candida albicans fungi. Conclusion: The two compounds showed better activity against Staphylococcus aureus, compound 3b is more active against Escherichia coli, and compound 3a is more active against Klebsiella pneumonia.
In this work, novel compounds of hydrazones derived from (2,4-dinitrophenyl) hydrazine were synthesized. Benzamides derivatives and sulfonamides derivatives were prepared from p-amino benzaldehyde. Then these compounds were condensed with (2,4-dinitrophenyl) hydrazine through Imine bond formation to give hydrazones compounds. The compounds were characterized using FT-IR (IR Affinity-1) spectrometer, and 1HNMR analyses. The majority of the compounds have a moderate antimicrobial activity against “Gram-positive bacteria staphylococcus Aureus, and staphylococcus epidermidis, Gram-negative bacteria Escherichia coli, and Klebsiella pneumoniae, and fungi species Candida albicans” using concentrations of 250 µg\ml.
Metal complexes of Cu (II), Fe (III) and Mn (II) with Quinaldic acid (L1) and 1, 10-Phenathroline (L2) are synthesized and characterized by standaral physic- chemical procedures (element analysis, metal analysis, FTIR, Uv-Vis, magnetic moment and conductometeric measurements). On the base of these studies, mononuclear and six coordinated octahedral geometry and nonelectrolyte of these complexes have been proposed. The standard heat of formation (?Hºf) and binding energy (?Eb) for the free ligands and their complexes are calculated by using the PM3 method at 273K of Hyperchem.-8 program. The complexes are more stable than their ligands. Moreover, the electrostatic potential of free ligands are measured to investigate the reactive site of th
... Show MorePathological blood clot in blood vessels, which often leads to cardiovascular diseases, are one of the most common causes of death in humans. Therefore, enzymatic therapy to degrade blood clots is vital. To achieve this goal, bromelain was immobilized and used for the biodegradation of blood clots. Bromelain was extracted from the pineapple fruit pulp (Ananas comosus) and purified by ion exchange chromatography after precipitation with ammonium sulphate (0-80 %), resulting in a yield of 70%, purification fold of 1.42, and a specific activity of 1175 U/mg. Bromelain was covalently immobilized on functionalized multi-walled carbon nanotubes (MWCNT), with an enzyme loading of 71.35%. The results of the characterization of free and immobilized
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show More