Preferred Language
Articles
/
Lhegoo0BVTCNdQwCsBeE
A comparative study of Gaussian mixture algorithm and K-means algorithm for efficient energy clustering in MWSN
...Show More Authors

Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving energy of up to 92% at 4,500 rounds.

Scopus Crossref
View Publication
Publication Date
Mon Jan 28 2019
Journal Name
Soft Computing
Bio-inspired multi-objective algorithms for connected set K-covers problem in wireless sensor networks
...Show More Authors

Scopus (13)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Finding Mixture Weibull Distribution
...Show More Authors

In this paper a new idea was introduced which is finding a new distribution from other distributions using mixing parameters; wi  where  0 < wi < 1 ­and . Therefore we can get many mixture distributions with a number of parameters. In this paper I introduced the idea of a mixture Weibull distribution which is produced from mixing two Weibull distributions; the first with two parameters, the scale parameter , and the shape parameter,  and the second also has the scale parameter , and the shape parameter,  in addition to the location parameter, . These two distributions were mixed using a new parameter which is the mixing parameter w which represents the proportion

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 08 2022
Journal Name
Journal Of Computational Design And Engineering
Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system
...Show More Authors
Abstract<p>Phase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge </p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs
...Show More Authors

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (10)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems Using Convolutional Neural Network
...Show More Authors

AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai

... Show More
View Publication
Publication Date
Tue Jan 01 2008
Journal Name
Lecture Notes In Computer Science
IRPS – An Efficient Test Data Generation Strategy for Pairwise Testing
...Show More Authors

View Publication
Scopus (21)
Crossref (7)
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
International Journal Of Computer Theory And Engineering
MIPOG - An Efficient t-Way Minimization Strategy for Combinatorial Testing
...Show More Authors

View Publication
Crossref (16)
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems using Convolutional Neural Network
...Show More Authors

Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Results In Physics
An efficient iterative method for solving the Fokker–Planck equation
...Show More Authors

View Publication
Crossref (11)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref