The research includes the synthesis and identification of the mixed ligands complexes of M+2ions in general composition[M(Asn)2(SMX)] Where L- Aspargine (C4H8N2O3)symbolized (AsnH) as a primary ligand and Sulfamethoxazole(C10H11N3O3S) symbolized (SMX) as a secondary ligand. The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na+Asn-): (SMX)] molar ratios with M(II) ions, Where: M(II)=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). The UV–Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non-electrolytic nature of the complexes. The antimicrobial activities of ligands and their mixed ligand complexes were screened by disc diffusion method.
Azo derivative ligand[H3L] have been synthesized by the reaction of diazonium salt of p-amino benzoic acid with orcinol in(1:1)mole ratio. The bidente ligand was reacted with the metal ions MnII,FeIIandCrIIIin(2:1)mole ratio via reflux in ethanol using Et3N as a base to give complexes of the general formula: [ M(H2L)2(H2O)x]Cly The synthesized compounds were characterized by spectroscopic methods[ I.R , UV-Vis, A.A and H1 NMR]along with melting point, chloride content and conductivity measurements. The complexes were screend for their in vitro antibacterial activity against one strain of staphylococcus as Gram(+) positive and one strain of pseudomonas as Gram(-) Negative, using the agar diffusion technique.
New complexes of the some trivalent transition metal ions of the uracil such as [M(Ura)3Cl3] and mixed ligand metal complexes with uracil and oxalic acid [M(Ura)2(OA)(OH2)Cl].H2O type, where (Ura)=Uracil, (OA= Oxalic acid dihydrate, (M= Cr+3 and Fe+3) were synthesized and characterized by the elemental analysis, FT.IR, electronic spectra, mass spectra and magnetic susceptibility as well as the conductivity measurements. Six–coordinated metal complexes were suggested for the isolated complexes of Cr+3 and Fe+3 with molecular formulas dependent on the nature of uracil and oxalic acid present. The proposed molecular structure for all complexes with their ions is octahedral geometries. The antibacterial efficiency was tested of metal salts, l
... Show MoreA new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using Hyp
... Show MoreNew ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreA new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17- tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These st
... Show MoreA new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show MoreIn this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreThe removal of congo red (CR) is a critical issue in contemporary textile industry wastewater treatment. The current study introduces a combined electrochemical process of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of this dye. Moreover, it discusses the formation of a triple composite of Co, Mn, and Ni oxides by depositing fixed salt ratios (1:1:1) of these oxides in an electrolysis cell at a constant current density of 25 mA/cm2. The deposition ended within 3 hours at room temperature. X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and energy dispersive X-ray (EDX) characterized the structural and surface morphology of the multi-oxide sedim
... Show MoreRemoving Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.