Background Numerous studies indicated that workers in the health sector suffer from work stress, hassles, and mental health problems associated with COVID-19, which negatively affect the completion of their job tasks. These studies pointed out the need to search for mechanisms that enable workers to cope with job stress effectively. Objectives This study investigated psychological flow, mental immunity, and job performance levels among the mental health workforce in Saudi Arabia. It also tried to reveal the psychological flow (PF) and mental immunity (MI) predictability of job performance (JP). Method A correlational survey design was employed. The study sample consisted of 120 mental health care practitioners (therapists, psychologists, counselors)who lived in Saudi Arabia. Sixty-four were men, 56 were women, and their ages ranged between 27 and 48 (36.32±6.43). The researchers developed three measurements of psychological flow, mental immunity, and job performance. After testing their validity and reliability, these measures were applied to the study participants. Results The results found median levels of psychological flow, mental immunity, and job performance among mental health care practitioners. Also, the results revealed that psychological flow and mental immunity were statistically significant predictors of job performance. The psychological flow variable contributed (38.70%) and mental immunity (54.80%) to the variance in job performance of mental health care practitioners.
Biomarkers such as Interleukin-6 (IL-6), Procalcitonin (PCT), C-reactive protein (CRP) and Neutrophil-Lymphocyte Ratio (NLR) have a role in the pathogenesis of severe coronavirus disease 2019 (COVID-19). The aim of this study was to explore the differences between serum levels of such biomarkers in severe and non-severe COVID-19 cases and compare them with normal people and to evaluate the sociodemographic variables and chronic diseases effect on the severity of COVID-19. The study included 160 subjects, divided into two groups, a case group of 80 patients, and a control group of 80 normal persons. The case group was divided into two subgroups: 40 severe COVID-19 patients and 40 patients with non-severe disease. Blood IL-6 was asses
... Show MoreObjective(s): To evaluate and compare between Health Promotion Program for the Prevention of Epidemics at Primary Health Care Centers in Baghdad City.
Methodology: A descriptive study, using the evaluation and comparative approaches, is conducted to evaluate health promotion program for the prevention of epidemics at primary health care centers in baghdad city from October 15th 2019 through March 1st 2020. A purposive, non-probability, sample of (42) health promotion unit officers were recruited from the same number of primary health care centers which were divided into (14) main, (14) sub and (14) family medicine primary health care centers i
... Show MoreThis study aimed to identify attitudes towards mental illness in pregnant female clients to clinics women in the province of Ramallah and Al Bireh, for this purpose applied to study procedures on a sample of (200) of pregnant mothers were selected a sample available, have reached results no statistically significant differences in the level of attitudes towards mental illness due to the variable age in mothers pregnant female clients to clinics for women. Ther were astatistically significant differences in the level of these trends depending on the variable-level scientific research for the benefit of pregnant class university students and older and then high school and so on all areas except the area of social interaction, The results a
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreIn this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
Factor analysis is distinguished by its ability to shorten and arrange many variables in a small number of linear components. In this research, we will study the essential variables that affect the Coronavirus disease 2019 (COVID-19), which is supposed to contribute to the diagnosis of each patient group based on linear measurements of the disease and determine the method of treatment with application data for (600) patients registered in General AL-KARAMA Hospital in Baghdad from 1/4/2020 to 15/7/2020. The explanation of the variances from the total variance of each factor separately was obtained with six elements, which together explained 69.266% of the measure's variability. The most important variable are cough, idleness, fever, headach
... Show MoreThe most common cause of upper respiratory tract infection is coronavirus, which has a crown appearance due to the existence of spikes on its envelope. D-dimer levels in the plasma have been considered a prognostic factor for COVID-19 patients.
The aim of the study is to demonstrate the role of COVID-19 on coagulation parameters D-dimer and ferritin with their association with COVID-19 severity and disease progression in a single-center study.
Objective(s): To evaluate the family physicians' practices and to measure its impact upon the quality of family
medicine health care in Baghdad City model primary health care centers.
Methodology: A descriptive study, using the evaluation approach, has evaluated the impact of family physicians'
practices upon quality of healthcare in Baghdad's Model Primary Health Care Centers of Family Medicine. It is
carried out during 15th of May – 20th of August 2017. The study is conducted at five model primary health care
centers of family medicine from two districts; AL-Rusafa and AL-Kurkh. Sample size is calculated to be (76)
family physicians. Convenient sample of (124) patients who are attending these primary health care cen
Coronavirus 2019 (COVID-19) pandemic led to a massive global socio-economic tragedy that has impacted the ecosystem. This paper aims to contextualize urban and rural environmental situations during the COVID-19 pandemic in the Middle East and North Africa (MENA) Region.
An online survey was conducted, 6770 participants were included in the final analysis, and 64% were females. The majority of the participants were urban citizens (74%). Over 50% of the urban residents significantly (