ABSTRACT : This research involves the synthesis of five to seven heterocyclic compounds starting with Schiff’s bases which derived from oxime as a starting material. 1.3-oxazepine derivatives were prepared from adding different anhydrides to the Schiff bases, tetrazole and thiazolidinone derivatives synthesized from add sodium azide and thioglycolic acid to the same Schiff’s bases as a five members ring. Pyrimidine derivatives were prepared after the reaction of the azomethine group with acetyl chloride and then urea and thiourea to synthesis on derivatives contain the six members ring. Another step included identified and confirmed these compounds by FT- IR, 1HNMR, TLC and 13CNMR finally, step included the assay of biological activity
... Show MoreN-Benzylidene m-nitrobenzeneamines (Schiff bases) were prepared by condensation of m-nitroaniline with aromatic aldehydes. These Schiff bases were found to react with maleic anhydride to give 2-Aryl-3-(m-nitrophenyl)-2, 3-dihydro [1, 3] oxazepine–4, 7–diones and with phthalic anhydride to give 2-Aryl-3–(m-nitrophenyl)–2, 3–dihydrobenz|| 1, 2-e|||| 1, 3] oxazepine–4, 7-diones which were reacted with pyrrolidine to give the anilide–pyrrolidides of maleic acid and phthalic acid.
So far synthesis of Gonadotropin Releasing Hormone (GnRH) analogues reported in the literature has clarified some aspects of structural activity of the naturally released GnRH. As a part of continuing efforts for further understanding of this relationship, the present investigation was undertaken which involved synthesis and biological evaluation of two GnRH analogues, firstly, by replacement of the amino acid L-Argenine in the 8th position at the backbone structure of the natural hormone by the amino acid D-Alanine; and secondly, by replacement of the amino acid L-Glycine in the 10th position by D-Alanine also at the backbone structure of the nature hormone, to obtain the following analogues respectively:
P
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreAbstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show More