Collaborative learning is a way that prepares students practically for real-world applications. Working together as teamwork to execute various writing skills is essential in most professions since it increases the level of experience. Thus, the current study aims to identify the role collaborative writing in developing students' level of performance in writing. It is qualitative in nature since the researcher depended on the extant literature in achieving the objective of the study. The researcher touched upon related theories that addressed Collaborative learning, categories, and problems .It concluded that collaborative writing increases the students’ self-confidence, self-esteem, creativity, and motivation through the interaction among students over task completion. It enables the provision of feedback between students, which enhances their vocabulary, offers them ideas, and improves their learning. Writing in groups improves students’ writing in the aspect of grammatical accuracy and vocabulary. Finally, the study came out with a number of recommendations.
This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreThe study aimed to reveal the level of knowledge and tendencies of high- study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with brain-based learning (BBL). And Then, putting a proposed concept to develop knowledge and tendencies of high-study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with Brain-based learning (BBL). For achieving this goal, a cognitive test and a scale of tendency were prepared to apply harmonious strategies with brain-based learning. The descriptive approach was used because it suits the goals of the study. The study sample consisted of (70) male and female students of postgraduate
... Show MoreAbstract
The fiber Bragg grating (FBG) technology has been rapidly applied in the sensing technology field. In this work, uniform FBG was used as pressure sensor based on measuring related Bragg wavelength shift. The pressure was applied directly by air compressor to the sensor and the pressure was ranged from 1 to 6 bar.
This sensor also was affected by the external temperature so as a result it could be used as a temperature sensor. This sensor could be used to monitor the pressure of dams. It has been shown from the result that the sensor is very sensitive to the pressure and the sensitivity was (67 pm\bar) and is very sensitive to temperature and the sensitivity was (10p
... Show MoreAbstract
Heavy-duty diesel vehicle idling consumes fossil fuel and reduces atmospheric quality at idle period, but its restriction cannot simply be proscribed. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from DI multi-cylinders Fiat diesel engine. Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), smoke opacity, carbon dioxide (CO2) and noise have been reported, when three EGR ratios (10, 20 and 30%) were added to suction manifold.
CO2 concentrations increased with increasing idle time and engine idle speed, but it didn’t show clear effect for IT adva
... Show MoreAntacids have been widely used in the treatment of various gastric and duodenal disorders such as heartburn, reflux esophagitis, gastritis, irritable stomach, gastric and duodenal ulcers. A pH-responsive of bi-polymer of sodium alginate and pectin have been studied as raft-forming polymers using sodium bicarbonate and calcium carbonate as gas-generating and calcium ion sources. The aim of study was to formulate and evaluate mono and bilayer tablets of floating and sustained release antacid delivery systems using sodium carboxy methyl cellulose as a gel forming substance, calcium and magnesium carbonate as sources of acid neutralizing and carbon dioxide gas generators agents upon contact with acidic solution. The effect of the formulation
... Show MoreAbstract
Basra province is known for its logistic location for trading activity and oil industry. By geological point of view, Basra areas are believed to consist mainly of alternation of (clay, silty clay, clayey silt, silt and sand) type of soil. Any development of industry in this area should be affected by the occurrence of the clay soil. That is why the investigation to the soil is more than necessary. In this case, a vast testing program was carried out by the author to evaluate the various formations constituting the of some Basra soils. An attempt to characterize and discuss the nature, minerals, engineering behavior and field properties of soil samples extracted from more than one thousand and one
... Show MoreThe issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show More