The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group of signatures, numbering 70 images, were used. Image preprocessing steps were performed on them, and their features were extracted using the median filter. After that, the eigenvector and eigenvalue were calculated using the PCA algorithm. Then the backpropagation neural network algorithm was applied for training and testing where the performance reached 6.7995e−07 for 82 epochs and the accuracy was 99.98%.
In petroleum industry, the early knowledge of “pore pressure gradient” is the basis in well design and the extraction of these information is more direct when the pore pressure gradient is equal to normal gradient; however, this matter will be more complex if it deviate from that limit which is called “abnormal pore pressure”, if this variable does not put in consideration, then many drilling problems will occur might lead to entire hole loss. To estimate the pore pressure gradient there are several methods, in this study; Eaton method’s is selected to extract the underground pressure program using drilling data (normalized rate of penetration) and logs data (sonic and density log). The results shows that an abnormal high press
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreThe recent development in communication technologies between individuals allows for the establishment of more informal collaborative map data projects which are called volunteered geographic information (VGI). These projects, such as OpenStreetMap (OSM) project, seek to create free alternative maps which let users add or input new materials to the data of others. The information of different VGI data sources is often not compliant to any standard and each organization is producing a dataset at various level of richness. In this research the assessment of semantic data quality provided by web sources, e.g. OSM will depend on a comparison with the information from standard sources. This will include the validity of semanti
... Show MoreAutism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this
... Show MoreEmpirical equation has been presented to predict the optimum hydrodynamic
pressure gradient with optimum mud flow rate (one equation) of five Iraqi oil wells
to obtain the optimum carrying capacity of the drilling fluid ( optimum transport
cuttings from the hole to the surface through the annulus).
This equation is a function of mud flow rate, mud density and penetration
rate without using any charts or graphs.
The correlation coefficient accuracy is more than 0.9999.
Planning of electrical distribution networks is considered of highest priority at the present time in Iraq, due to the huge increase in electrical demand and expansions imposed on distribution networks as a result of the great and rapid urban development.
Distribution system planning simulates and studies the behavior of electrical distribution networks under different operating conditions. The study provide understanding of the existing system and to prepare a short term development plan or a long term plan used to guide system expansion and future investments needed for improved network performance.
The objective of this research is the planning of Al_Bayaa 11 kV distribution network in Baghdad city bas
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreChange detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac