This research focuses on the synthesis of carbon nanotube (CNT) and Poly(3-hexylthiophene) (P3HT) (pristine polymer) with Ag doped (CNT/ P3HT@Ag) nanocomposite thin films to be utilised in various practical applications. First, four samples of CNT solution and different ratios of the polymer (P3HT) [0.1, 0.3, 0.5, and 0.7 wt.%] are prepared to form thin layer of P3HT@CNT nanocomposites by dip-coating method of Ag. To investigate the absorption and conductivity properties for use in various practical applications, structure, morphology, optical, and photoluminescence properties of CNT/P3HT @Ag nanocomposite are systematically evaluated in this study. In this regard, the UV/Vis/NIR spectrophotometer in the wavelength range of 350 to 700 nm is used to investigate the absorption, transmission spectrum, extinction coefficient (k) and refractive index of the samples prepared at room temperature. The XRD results indicate a slight increase in the crystallite size of the synthesized (CNT/ P3HT@Ag) nanocomposite compared to CNT/P3HT nanocomposite, which can be attributed to the better dispersion of the P3HT and its favorable wrapping around the carbon nanotube structures. FESEM results show that the Ag nanoparticles are acting as a bridge between the CNT and P3HT, creating a strong bond between the two materials that is strong enough to form thicker tubular structures. An appreciable increase in absorbance intensity (approximately 552 nm) is obtained by adding silver nanoparticles to the CNT/P3HT matrix at 0.5% of P3HT. Additionally, the prepared CNT/P3HT@Ag thin films show greater transmittance – more than 42%, 45%, 49%, and 48% for P3HT concentrations of 1%, 3%, 5%, and 7%, respectively. The preparation of the samples' extinction coefficient (k) and refractive index data show that the inclusion of silver nanoparticles to the CNT/P3HT nanocomposite matrix has a significant improvement over the previous samples (CNT/P3HT composite).
Transition metal complexes of Co(II) and Ni(II) with azo dye 3,5-dimethyl-2-(4-nitrophenylazo)-phenol derived from 4-nitoaniline and3,5-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis,electronic data, FT-IR,UV-Vis and 1 HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of thecomplexes formed were studies following the mole ratio and continuous variation methods, Beer ' s law obeyed over a concentrationrange (1x10 -4 - 3x10 -4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, thestoichiomerty of the complexes has been found to be 1:2 (Metal:ligand). On the basis of physicochemical data tetrahedral
... Show MoreNew metal ion complexes were synthesized with the general formula; K[PtLCl4], [ReLCl4] and K[ML(Cl)2] where M = Pd(II), Cd(II), Zn(II) and Hg(II), from the Azo ligand (HL) [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] (HL) the ligand was synthesized from (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol). The ligand and its metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, UV-Vis and Mass spectra, elemental analysis, molar conductivity, Atomic Absorption, Chloride contain and magnetic susceptibility). The spectral data suggest that the (HL) behaves as a bidentate ligand in all complexes. These studies revealed tetrahedral geometries for all metal complexes
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show MoreIn this research, a new 1, 3, 4-Thiadiazole derivatives have been synthesized by many heterocyclic reactions. Starting from (2, 5 – dimercapto -1, 3, 4-Thiadiazole) a variety of derivatives have been synthesis. Compound (1) was synthesized by the reaction of hydrazine hydrate with carbon disulphide in absolute ethanol. The compound (1) was reacted with 1, 2-dibromoethane in presence of alkali ethanol to give the compound (2). The compound (3) was formed from the reaction of compound (2) with hydrazine hydrate. Schiff base (4) was obtained by reacting of compound (3) with the compound (p-hydroxybenzaldehyde) in absolute ethanol. A variety of phenolic Schiff base (Methylolic, Etheric, and Epoxy) derivatives have been synthesized. Methylol
... Show MoreA new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
Iron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
This search reports the synthesis of some new series of Schiff base compounds for trimetheprim derivatives which known high been known as a medicinal effectiveness. Trimetheprim was condensed with several substituted aldehydes compounds.(4-dimethyl amine benzaldehyde , propanal , salicaldehyde, 2.4 dimethoxy benzaldehyde and 4- methyl benzaldehyde) to obtain Schiff base products(1a-5a) and several substituted ketones compound (4-aminoacetophenone,4-chloroacetophenone, isobutyleketone, acetylacetone and acetophenone) to obtain Schiff base products(6b-10b) in ethanol in the presence of concentrated sulphuric acid as a catalyst to yield the Schiff base. The structure of synthesized compounds has been established on the basis of their Chemical
... Show More