The control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estimate the unmeasurable variables and lumped disturbances simultaneously in fixed-time, and to effectively reduce the estimation noise. Finally, the FxTSMC scheme for a high-order underactuated FJR system is designed to guarantee that the system tracking error approaches to zero within a fixed-time that is independent of the initial conditions. The fixed-time stability of the closed-loop system of the FJR dynamics is mathematically proven by the Lyapunov theorem. Simulation investigations and hardware tests are performed to demonstrate the efficiency of the proposed controller scheme. Furthermore, the control technique developed in this research could be implemented to the various underactuated mechanical systems (UMSs), like drones, in a promising way.
The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreIn this paper, we show that for the alternating group An, the class C of n- cycle, CC covers An for n when n = 4k + 1 > 5 and odd. This class splits into two classes of An denoted by C and C/, CC= C/C/ was found.
AThe Bridge Maintenance Management System (BMMS) is an application system that uses existing data from a Bridge Management System database for monitoring and analysis of current bridges performance, as well as for estimating the current and future maintenance and rehabilitation needs of the bridges. In a transportation context, the maintenance management is described as a cost-effective process to operate, construct, and maintain physical money. This needs analytical tools to support the allocation of resources, materials, equipment, including personnel, and supplies. Therefore, Geographic Information System (GIS) can be considered as one tool to develop the road and bridge maintenanc
Objective: To compare the efficacy and safety of isosorbide mononitrate (IMN) versus misoprostol used to induce labour for overdue pregnancy.
Setting: A prospective randomized clinical study conducted at AL-Elwiya Maternity Teaching Hospital in Baghdad from Jan. 2008 to Dec. 2008.
Method: One hundred and fifty women with over due pregnancy (past date and posterm pregnancy) referred for induction of labour with Bishop scores <_ 5 were randomly allocated to receive either forty mg isosorbide mononitrate (IMN) tablet as a single vaginal dose (n=75) or fifty mcg misoprostol vaginally (n=75) every six hrs for a maximum of three doses. Amniotomy and/or oxytocin infusion is considered when Bishop scores frankly progressed (augmentation
This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreThe research aims to identify the educational plan for the private and public kindergartens. The researchers selected a sample consisted of (59) female teachers for the private kindergartens and (150) female teachers for the public kindergartens in the city of Baghdad. As for the research tool, the two researchers designed a questionnaire to measure the educational plan for the private and public kindergartens. The results revealed that private kindergartens have educational plans that contribute considerably to classroom interaction, the public kindergartens lack for educational plans. In light of the findings of the research, the researchers recommend the following: the need to set up a unified educational plan for the priv
... Show MoreThe aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show More