A batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
Lithium doped Nickel-Zinc ferrite material with chemical formula Ni0.9−2x Zn0.1LixFe2+xO4, where x is the ratio of lithium ions Li+ (x = 0, 0.01, 0.02, 0.03 and 0.04) prepared by using sol-gel auto combustion technique. X-ray diffraction results showed that the material have pure cubic spinal structure with space group Fd-3m. The experimental values of the lattice constant (aexp) were decreased from 8.39 to 8.35 nm with doped Li ions. It was found that the decreasing of the crystallite size with addition of lithium ions concentration. The radius of tetrahedral (rtet) and octahedral (roct) site were computed from cation distribution. SEM images have been taken to show the morphology of compound. The dielectric parameters [dissipation fa
... Show MoreIn this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more
... Show MoreNanoferrite materials have been synthesized by sol-gel auto combustion method. The effect of doping different percentages of Y2O3 (0.34 µm) on the physical and mechanical properties of selected mixed ferrite [(Li2.5Fe0.5) 0.9(Co4Fe2O4) 0.1] by adding 10% Cobalt ferrite was studied. Physical properties (i.e. .density, porosity and water absorption) were affected by the doping, where the density increased about 32% at 6 wt% Y2O3, while porosity has a drastically decreased about 80% at 6% Y2O3 and has a correlation effect on the mechanical properties(Splitting tensile strength and Vicker
... Show MoreIn this work the structural, optical and sensitive properties of Cerium - Copper oxide thin film prepared on silicon and glass substrate by the spray pyrolysis technique at a temperature of (200, 250, 300 °C). The results of (XRD) showed that all the prepared films were of a polycrystalline installation and monoclinic crystal structure with a preferable directions was (111) of CuO. Optical characteristics observed that the absorption coefficient has values for all the prepared CuO: Ce% (104 cm-1) in the visible spectrum, indicating that all the thin films prepared have a direct energy gap. Been fabrication of gas sensors of (CuO: Ce %) within optimum preparation conditions and study sensitivity properties were examined her exposed to ni
... Show MoreIn this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
A number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.