Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.
Heat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.
Artificial roughness applied to a Solar Air Heater (SAH) absorber plate is a popular technique for increasing its total thermal efficiency (ηt−th). In this paper, the influence of geometrical parameters of V-down ribs attached below the corrugated absorbing plate of a SAH on the ηt−th was examined. The impacts of key roughness parameters, including relative pitch p/e (6–12), relative height e/D (0.019–0.043), angles of attack α (30–75°), and Re (1000–20,000), were examined under real weather conditions. The SAH ηt−th roughened by V-down ribs was predicted using an in-house developed conjugate heat-transfer numerical model. The maximum SAH ηt−th was shown to be 78.8% as predicted under the steady-state condition
... Show MoreIn the present work, experimental tests was done to explain the effect of insulation and water level on the yield output. Linear basin, single slope solar still used to do this purpose. The test was done from May to August 2017 in Mosul City-Iraq (Latitude: Longitude: Elevation: 200 m, and South-East face). Experimental results showed that the yield output of the still increased by 20.785% and 19.864% in case of using thermal insulation at 4cm and 5cm respectively, also the yield output decrease by 15.134% as the water level increase from 4 to 5cm, with the presence of insulation and 14.147% without it. It has been conclude that the insulation and water level play important role in the process of passive
... Show MoreBackground: Dimensional changes of acrylic denture bases after polymerization results in need for further adjustments or even ends with technical failure of the finished dentures. The purpose of this study was to estimate the linear dimensional changes for different palatal depths when using multiple investment materials and polymerization techniques. Materials and methods: Ninety upper complete denture bases were constructed for this study. They were divided into two main groups according to the polymerization methods: conventional water bath and experimental autoclave (short and long cycles). Each main group was further subdivided into three subgroups according to the palatal depth (shallow, medium and deep). Furthermore, for each palatal
... Show MoreChoosing an appropriate impression material is a challenge for many dentists, yet an essential component to provide an excellent clinical outcome and improve productivity and profit. The purpose of present study was to compare wettability, tear strength and dimensional accuracy of three elastomeric impression materials, with the same consistencies (light-body). Three commercially available light body consistency and regular set 3M ESPE Express polyvinylsiloxane (PVS), 3M ESPE Permadyne polyether (PE), and Identium (ID), impression materials were comparedTear strength test, contact angle test and linear dimensional accuracy were evaluated for three elastic impression material. Among the three experimental groups PE impression materia
... Show MoreBackground: Restoration of the gingival margin of Class II cavities with composite resin continues to be problematic, especially where no enamel exists for bonding to the gingival margin. The aim of study is to evaluate the marginal leakage at enamel and cementum margin of class II MOD cavities using amalgam restoration and modern composite restorations Filtek™ P90, Filtek™ Z250 XT (Nano Hybrid Universal Restorative) and SDR bulk fill with different restoratives techniques. Materials and method: Eighty sound maxillary first premolar teeth were collected and divided into two main groups, enamel group and cementum group (40 teeth) for each group. The enamel group was prepared with standardized Class II MOD cavity with gingival margin (1 m
... Show More