12 membered Schiff base macrocyclic ligands, 6,7,14,15-tetra phenyl-1,2,3,4, 4a,8a, 9,10, 11,12, 12a,16a-dodecahydro dibenzo [b,h] [1,4,7,10] tetraazacyclododecine L1, and 14 membered Schiff base macrocyclic ligands, 6,8,15,17-tetramethyl-1,2,3,4, 4a,7,9a, 10,11,12,13,13a,16,18a-tetra decahydro dibenzo[b,i] [1, 4,8,11] cyclotetradecine tetraaza L2, 7,16-bis(2,4- dichloro benz ylidene)-6,8,15,17-tetra methyl-1,2,3,4, 4a,7,9a, 10, 11,12, 13, 13a,16,18a-tetra deca hydro dibenzo [b,i] [1,4,8,11] tetra azacyclo tetra decine L3 and 6,8,15, 17-tetramethyl-1,2,3, 4,4a,9a,10, 11,12,13,13a,18a-dodecahydro dibenzo [b,i] [1,4,8, 11] tetraazacyclo tetradecine (7,16-diylidene) bis(methanylyli dene) bis (N,N-dimethylaniline) L4 were synthesized by condensation reaction between diketone and aliphatic diamines. The metal complexes of the types, [ML1Cl2], [ML2Cl2], [ML3Cl2] and [ML4Cl2] [M= Co(II), Ni(II), Cu(II), Mn(II), Hg(II), and Fe(II)] were prepared by interaction of ligands, L1, L2, L3 and L4 with metal(II) ions. The ligands and their complexes were characterized by elemental analysis, magnetic susceptibility, conductivity measurements and IR, 1H and 13C NMR, UV–Vis spectral studies. The thermal stability of the complexes was also studied by TGA analyses. These studies show that all the complexes have octahedral arrangement around the metal ions. We used CB-Dock, a novel blind docking technique that aims to improve docking precision. With the aid of the cutting-edge docking program Autodock Vina, software online, molecular docking studies were used to evaluate the biological significance of the synthesized ligands and identify the probable and efficient binding mechanisms between the various ligands and the active site of the receptor protein. Affinity binding of both Ligand L3 and L4 to Penicillin binding protein 2x (chain B) with PDB 1PYY were much better than to Penicillin binding protein 2B (chain A) with PDB 1WAE due to the presence of hydrogen and halogen bonds. Therefore, they can be more recommended for drug design study to inhibit bacterial growth due their bioavailability. The biological activities of all compounds were evaluated like in-vitro antioxidant activity or percentage free radical scavenging effect via DPPH method against standard ascorbic acid and in vitro anticancer activity via MTT assay against colon cancer cell lines. Results of the biological activities showed that complex CuL3Cl2 exhibited the highest anti-cancer activity against colon cancer cell line i.e. 70.72±6.3 μg/ml among other copper complexes whereas compound CuL3Cl2 showed best antioxidant activity against ascorbic acid i.e. 75.07±1.96 μg/ml. While the biological activities showed that complex CuL4Cl2 exhibited the highest anti-cancer activity against colon cancer cell line i.e. 42.05±7.4 μg/ml among other copper complexes whereas compound CuL4Cl2 showed best antioxidant activity against ascorbic acid i.e. 65.47±1.37 μg/ml.
In this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of Si
... Show MoreThis study employed the biosynthetic technique for creating vanadium nanoparticles (VNPs), which are affordable and user-friendly; VNPs was synthesized using vanadium sulfate (VOSO4.H2O) and a plant extract derived from Fumaria Strumii Opiz (E2) at a NaOH concentration of 0.1 M. This study aims to investigate the potential applications of utilizing an adsorbent for metal ions to achieve environmentally friendly production and assess its antibacterial activity and cytotoxicity. The reaction was conducted in an alkaline environment with a pH range of 8–12. The resulting product was subjected to various characterization techniques, including Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, x-ray diffraction (XRD), t
... Show MoreIn this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi
... Show MoreAbstract
A series of new 4(3H)-quinazolinone derivatives (S1-S4) were synthesized and characterized by FTIR,1HNMR and 13CNMR .Their cytotoxic activity against a set of human cancer cell lines MCF-7 (breast) and A549 (lung) was evaluated using MTT assay. To detect their selectivity toward cancer cells, the compounds were also tested against epithelial cells derived from normal human fibroblast (NHF). Methotrexate (MTX) was used as a reference for comparison . All the tested compounds exhibited toxicity against the normal cells lower than cancer cells. All the tested compounds displayed higher cytotoxicity against lung cancer cell line (A549) than MTX with the most
... Show More