A stochastic process {Xk, k = 1, 2, ...} is a doubly geometric stochastic process if there exists the ratio (a > 0) and the positive function (h(k) > 0), so that {α 1 h-k }; k ak X k = 1, 2, ... is a generalization of a geometric stochastic process. This process is stochastically monotone and can be used to model a point process with multiple trends. In this paper, we use nonparametric methods to investigate statistical inference for doubly geometric stochastic processes. A graphical technique for determining whether a process is in agreement with a doubly geometric stochastic process is proposed. Further, we can estimate the parameters a, b, μ and σ2 of the doubly geometric stochastic process by using the least squares estimate for Xk and ln Xk, as well as the linear regression method, where μ and σ2 are the mean and variance of X1, respectively. A real-world example is used to demonstrate the process. Furthermore, the estimators' output is evaluated using a real-world example. © 2021 DAV College. All rights reserved.
The present study is an attempt to throw light on the nature of the US policy regarding the Middle East region as portrayed by AI-Sabah, Al-Mashriq and Tariq Al-Shaab papers over a period of three months from 1st of July to 30th of September 2013.
In writing this study, a number of goals have been set by the researcher. These goals may include but in no way limited to the nature of the US image as carried by the above three papers, the nature of the topics tackled by them and the nature of the Arab countries which received more and extensive coverage than others.
A qualitative research approach is proposed for the study. This approach has allowed the researcher to arrive at definite answers for the possible questions rais
... Show MoreThe aim of this study is to identify the effect of enabling the effectiveness of the work of the audit committees in private commercial banks and to identify the extent of awareness of the importance of empowerment in the work of these committees, especially as it is known that these committees, especially the inspection committees that go to private banks and from various sources including committees of the Central Bank of Iraq Committees of the Securities Commission and finally committees of the external audit offices, through an analysis of the determinants of empowerment in the performance of the most important work of the audit committees, namely: supervising the process of preparing reports, supervising the system of intern
... Show MoreВ статье рассматривается вопрос об использовании мультимедийных средств для оптимизации процесса формирования коммуникативной компетенции в иракской аудитории с привлечением компьютерных технологий. Статья посвящена использованию мультимедийных технологий и различных приемов формирования интереса к русскому языку. Включение в процесс обучения коммуникативно-значимого, аутентичн
... Show MoreThe aim of this research is to use robust technique by trimming, as the analysis of maximum likelihood (ML) often fails in the case of outliers in the studied phenomenon. Where the (MLE) will lose its advantages because of the bad influence caused by the Outliers. In order to address this problem, new statistical methods have been developed so as not to be affected by the outliers. These methods have robustness or resistance. Therefore, maximum trimmed likelihood: (MTL) is a good alternative to achieve more results. Acceptability and analogies, but weights can be used to increase the efficiency of the resulting capacities and to increase the strength of the estimate using the maximum weighted trimmed likelihood (MWTL). In order to perform t
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show More