Cephalexin and its derivatives are commonly utilized in the pharmaceutical and medicinal industry due to their biological and pharmaceutical activities, including anti-microbial, anti-cancer, anti-bacterial, and herbicidal activities as well as possessing high palatability and being useful for skin and joint infections. Interestingly, some organic drugs, including cephalexin, which exhibit toxicological and pharmacological properties, can be administered in forms of metal complexes. Many researchers have synthesized organic ligands derived from cephalexin in forms of Schiff bases and azo compounds which exhibited higher biological and medicinal properties when compared to cephalexin alone. One of the important features that make Schiff base more desirable when used for coordination complexation is possessing the ability to coordinate with the metal ions via forming chelating rings, which make them very effective when it comes to clinical and analytical applications. In this review, we present the latest and most promising studies that are related to synthesizing organic derivatives of cephalexin and their drug-metal complexes as well as the biological activity that is associated with these complexes.
Complexes of (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+) with the ligand Ethyl cyano (2-methyl carboxylate phenyl azo acetate) (ECA) have been prepared and characterized by FTIR, (UV-Visible), Atomic absorption spectroscopy, Molar conductivity measurements and magnetic moments measurements. The following general formula has been suggested for the prepared complexes [M(ECA)2]Cl2 where M = (Co2+, Ni2+, Cu2+ ,Zn2+, Cd2+, Hg2+) and the geometry is octahedral.
A Schiff base ligand (L) was synthesized via condensation of
The ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show MoreBackground: Enforcement of sustainable and green chemistry protocols has seen colossal surge in recent times, the development of an effective, eco-friendly, simple and novel methodologies towards the synthesis of valuable synthetic scaffolds and drug intermediates. Recent advances in technology have now a more efficient means of heating reactions that made microwave energy. Efforts to synthesize novel heterocyclic molecules of biological importance are in continuation. Microwave irradiation is well known to promote the synthesis of a variety of organic and inorganic compounds. The aim of current study was to conceivea mild base mediated preparation of novel Schiff base of 2-Acetylpheno with trimethoprim drug (H2TPBD) and its complexes w
... Show MoreNew metal ions complexes of tridentate ligand (1-((dicyclohexylamino) methyl)-3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrzol-4-ylimino) indolin-2-one) have been synthesized and characterized by chemical-physical analysis. The ligand acts as a tridentate for the complexation reaction with all metal ions. The new complexes, possessing the general formula [M(L)Cl]Cl where M=[Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Hg(II) ] ,show tetrahedral geometry. All complexes ,except Pd(II) complex which has a square planar geometry and Pt(IV) which show an octahedral geometry. The geometry of the prepared compounds has been proposed in another method theoretically by using one of the calculation molecular programs (Hype
... Show MoreA new series of Schiff bases compounds , containing an azomethine linkage was synthesized and expected to be biologically active .The structures of these compounds were identified by IR , Uv/vis spectra , melting points and followed by T.L.C.The biological activity of these compounds was studied
Coupling reaction of 4-amino antipyrene with 4-amino benzoic acid gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]Cl2 . The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied following the mol
... Show Morecompound [1] was formed from the reaction of benzoin and benzaldehyde in the presence of ammonia, which was reacted with sodium hydride in DMF to obtain imidazole salt. This salt was reacted with adipoyl chloride to give compound [2]. Acid hydrazide derivative [3] was obtained from the reaction of compound [2] with hydrazine hydrate. After that Shiff bases [4-9] have been synthesized from the reaction of compound [3] with different aromatic aldehydes. These new formed compounds were diagnosed by 13C-NMR, 1H-NMR for some of them (in Ahl-Albate University in Jordan) and FT-IR spectroscopy (In Baghdad University). All of the prepared products have been studied their biological activities toward two kinds of bacteria. These products show
... Show MoreThe new bidentate ligand 2-amino-5-phenyl-1,3,4-oxadiazole (Apods) was prepared by the reaction of benzaldehyde semicarbazone with bromine and sodium acetate in acetic acid gave. The prepared ligand was identified by Microelemental Analysis, FT.IR, UV-Vis and 1HNMR spectroscopic techniqes. Treatment of the prepared ligand with the following selected metal ions (MnII, CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2].The prepared complexes were characterized using flame atomic absorption, (C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by Mohr metho
... Show More