Ganciclovir (GCV) is a drug included in BCS-Class III, having high solubility and low permeability. It is a synthetic acyclic nucleoside analog of 2′-deoxyguanosine, considered a potent inhibitor of herpes viruses and cytomegalovirus (CMV) infection. Herpes simplex virus (HSV) infections are very common and are also considered a major cause of corneal blindness. This study intended to advance a pioneering nanostructured lipid carriers (NLCs) system for improving the ocular permeability of GCV. Several procedures were used for the preparation. Cold homogenization, solvent injection, and emulsifi cationultrasonication methods. A mixture of palmitic acid (PA) and oleic acid (OA) as a lipid matrix, cremophore EL, and transcutol HP were used as emulsifi ers. To evaluate the optimum method, the particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment effi ciency (EE), and drug loading (DL%) were determined for the prepared NLCs. Due to the decreased particle size value, the polydispersity index, and the high value of EE%, emulsifi cation/ultrasonication outcomes were more practical than cold homogenization and solvent injection procedures. The fi ndings demonstrated that the preparation procedure had a substantial impact on the EE%.The emulsifi cation method can prepare the NLCs of GCV successfully.
The present research was conducted to synthesis Y-Zeolite by sol-gel technique using MWCNT (multiwalled carbon nanotubes) as crystallization medium to get a narrow range of particle size distribution with small average size compared with ordinary methods. The phase pattern, chemical structure, particle size, and surface area were detected by XRD, FTIR, BET and AFM, respectively. Results shown that the average size of Zeolite with and without using MWCNT were (92.39) nm and (55.17) nm respectively .Particle size range reduced from (150-55) nm to (130-30) nm. The surface area enhanced to be (558) m2/g with slightly large pore volume (0.231) km3/g was obtained. Meanwhile, degree of crystallization decrease
... Show MoreIn this study, hexadecyltrimethylammonium bromide (HDMAB) - bentonite was synthesized by placing alkylammonium cation onto bentonite. Adsorption of textile dye such as direct Yellow 50 on natural bentonite and HDMAB -bentonite was investigated. The effects of pH, contact time,dosage clay and temperature were investigated experimentally .The Langmuir and Freundlish isotherms equations were applied to the data and values of parameters of these isotherm equations were evaluated. The study indicated that using 0.2 g of HDMAB (hexadecyltrimethylammonium bromide) lead to increase the percentage removal(R%) from 78% for pure bentonite to 99 %. The optimum pH value for the adsorption experiments was found to be pH=3 and therefore all the experim
... Show MoreThe main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equ
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for treatment of heavy metals wastewater contains zinc. In this research, the salt of heavy metals were zinc chloride (ZnCl2) used as feed solution.Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The parameters studied were: operating time (0 – 70 min), feed concentrations for zinc ions (10 – 300 mg/l), operating pressure (1 – 4 bar).The theoretical results showed, flux of water through membrane decline from 19 to 10.85 LMH with time. Flux decrease from 25.84 to 10.88 LMH with the increment of feed concentration. The raise of pressure, the flux increase for NF and RO membranes.The maximum
... Show MoreIn this paper a stirred-bed performed of the copper catalyzed synthesis of ethylchlorosilanes from silicon and ethyl chloride was described. A Si-catalyst mixture prepared by reaction of CuCl and Si was employed. The compositions of products were mainly ethyltrichlorosilane, diethyldichlorosilane, and ethyldichlorosilane and mainly depended on the extent of Cu in the mixture and the reaction temperature. A promoting effect on the extent of adsorption was observed on the addition of certain additives. The kinetic data revealed the direct depended of the reaction rate on C2H5Cl pressure.
In this study three inorganic nano additives, namely; CaCO3, Al2O3 and SiO2 were used to prepare nanocomposites of unsaturated polyester in order to modify their mechanical properties, i.e. tensile strength, elongation, impact and hardness. The results indicated that all the three additives were effective to improve the mechanical properties up to 4% by weight. The effectiveness of them follows the order : CaCO3 > Al2O3 > SiO2 This is due to their particle size in which CaCO3 (13nm), Al2O3 (20-30nm) and SiO2 (15-20nm).
This study aims to use claystone beds exposed in the Injana Formation (Late Miocene) at Karbala-Najaf plateau, middle of Iraq for the manufacturing of perforated and ordinary bricks. The claystone samples were assessed as an alternative material of the recent sediments, which are preferred to remain as agricultural land. The claystones are sandy mud composing of 29.1 - 39.1% clay, 37.2 - 54.8% silt and 14.1-26.8% sand. They consist of kaolinite, illite, chlorite, palygorskite, and montmorillonite with a lot of quartz, calcite, dolomite, gypsum and feldspar. Claystone samples were characterized by linear shrinkage 0.01 - 0.1%, volume shrinkage 0.1 - 0.9%, bulk density 1.2 - 2.11gm/cm3 (1.68 g / cm3 average), and the efflorescence is
... Show MoreThe prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).