Background: The bone mineral density of the lumbar vertebra has been assessed according to the results of the Dual-Energy X-Ray Absorptiometry (DEXA). Although anemia is known to affect bone mineral density, at the present time, it is not clear which vertebra is more affected by this disease. Objective: To evaluate the effects of anemia on the bone mineral density of the lumbar vertebra in comparison with a normal subject and determine which part of the lumbar vertebra is more affected by anemia. Methods: All 205 participants in this study complained of bone pain (90 males and 105 females). 95 patients, including both sexes, suffered from anemia. Additionally, the study included 110 seemingly healthy volunteers as the control group. All participants were studied regarding their bone mineral density for lumbar vertebrae using dual-energy x-ray absorptiometry. Results: The DEXA outcomes revealed highly statistically significant differences between the control and patients of each lumbar vertebra in the same sex. In addition, there were significant differences in bone mineral density among the lumbar vertebrae of the same sex. Conclusions: Our findings suggest that examining the bone mineral density of the lumbar vertebrae is a more effective and appropriate method for studying the bone mineral density (BMD) of the bony skeleton in any subject, with L1 and L4 vertebrae being more susceptible to osteoporosis than other vertebrae.
In an earlier paper, the basic analytical formula for particle-hole nuclear state densities was derived for non-Equidistant Spacing Model (non-ESM) approach. In this paper, an extension of the former equation was made to include pairing. Also a suggestion was made to derive the exact formula for the particle-hole state densities that depends exactly on Fermi energy and nuclear binding energies. The results indicated that the effects of pairing reduce the state density values, with similar dependence in the ESM system but with less strength. The results of the suggested exact formula indicated some modification from earlier non-ESM approximate treatment, on the cost of more calculation time
The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be
... Show MoreDensity data of alum chrom in water and in aqueous solution of poly (ethylene glycol) (1500) at different temperatures (288.15, 293.15, 298.15) k have been used to estimate the apparent molar volume (Vθ), limiting apparent molar volume (Vθ˚) experimental slope (Sv) and the second derivative of limiting partial molar volume [δ2 θ v° /δ T2] p .The viscosity data have been analyzed by means of Jones –Dole equation to obtain coefficient A, and Jones –Dole coefficient B, Free activation energy of activation per mole of solvent, Δμ10* solute, Δμ20* the activation enthalpy ΔH*,and entropy, ΔS*of activation of viscous flow. These results have been discussed in terms of solute –solvent interaction and making/breaking ability of so
... Show MoreStructure of unstable 21,23,25,26F nuclei have been investigated
using Hartree – Fock (HF) and shell model calculations. The ground
state proton, neutron and matter density distributions, root mean
square (rms) radii and neutron skin thickness of these isotopes are
studied. Shell model calculations are performed using SDBA
interaction. In HF method the selected effective nuclear interactions,
namely the Skyrme parameterizations SLy4, Skeσ, SkBsk9 and
Skxs25 are used. Also, the elastic electron scattering form factors of
these isotopes are studied. The calculated form factors in HF
calculations show many diffraction minima in contrary to shell
model, which predicts less diffraction minima. The long tail
Viscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.
The Christian religion came in love and co-existence with all human beings, united in the minds of its people, including the great creation to form a strong unit of high ethics that contributes to the unity among the members of society and coexistence in security, peace and love of harmony.