The matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single line of Arabic text, which convert and segments into words and then segments into letters. A multilayer feed forward neural network is trained to recognize these segments as characters. The final results indicate and clarify that the proposed system perform an effective accuracy of recognition rated up to 83% for Arabic text.
Abstract The means of self-determination have their peaceful and non-peaceful dimensions and are united(peaceful and non-peaceful) by international consensus adopted by international conventions and instruments. This has given it various dimensions at the applied level, especially in the light of the contemporary international developments witnessed by the world represented by a number of complete and incomplete implementation models that have nothing to do with the theory of truth Self-determination associated with the liberation of peoples from colonial domination or the liberation of oppressed nationalities
The current research aims at testing the relationship between organizational immunity and preventing administrative and financial corruption (AFC) in Iraq. The Statistical Package for the Social Sciences program (R& SPSS) was used to analyse the associated questionnaire data. The research problem has examined how to activate the functions of the organizational immune system to enable it to face organizational risks, attempt to prevent administrative and financial corruption, and access the mechanisms by which to develop organizational immunity. A sample of 161 individuals was taken who worked in the Directorate General of Education, Karbala. Also, it was concluded to a lack of memory function for organizational immunity. In a
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
Home Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreRecently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua
... Show MoreJoint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d
Background: The rapid evolution of Artificial Intelligence (AI) has significantly influenced Education, demonstrating substantial potential to transform traditional teaching and learning methods. AI reshapes teacher-student interactions and the relationship with knowledge. Objective: To analyze the potential benefits, ethical challenges, and limitations of AI in Education based on recent scientific literature, emphasizing the balance between technology and human interaction. Methods: A documentary research approach with a descriptive focus was employed, following the PRISMA protocol for systematic reviews. The search strategy involved analyzing evidence from 18 scientific articles published within the last six years. Results:AI o
... Show More
Abstract of the research:
This research sheds light on an important phenomenon in our Arabic language, which is linguistic sediments, and by which we mean a group of vocabulary that falls out of use and that native speakers no longer use it, and at the same time it happens that few individuals preserve the phenomenon and use it in their lives, and it is one of the most important phenomena that It should be undertaken and studied by researchers; Because it is at the heart of our huge linguistic heritage, as colloquial Arabic dialects retain a lot of linguistic sediments, and we usually find them at all levels of language: phonetic, banking, grammatical and semantic. In the
... Show More