Protecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signal-noise ratio (PSNR), mean square error (MSE) and correlation) were conducted on a group of images to determine the strength and efficiency of the proposed method, and the result proves that the proposed method provided a good level of safety. The obtained results were compared with those of other methods, and the result of comparing confirms the superiority of the proposed method.
Background: The skull offers a high resistance of adverse environmental conditions over time, resulting in the greater stability of the dimorphic features as compared to other skeletal bony pieces. Sex determination of human skeletal considered an initial step in its identification. The present study is undertaken to evaluate the validity of 3D reconstructed computed tomographic images in sex differentiation by using craniometrical measurements at various parts of the skull. Materials and Method: 3D reconstructed computed tomographic scanning of 100 Iraqi subject, (50 males and 50 females) were analyzed with their age range from20-70 years old. Craniometrical linear measurements were located and marked on both side of the 3D skull images.
... Show MoreThis paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreThe primary aim of the study was to find out the values of some biomechanical variables for the long serve skill in badminton and to identify the effect of biomechanical feedback on the performance of long serve. The present study had a single group, pre-post experimental study design. The research community was determined by the intentional method of one group with a pre-and post-test. The players of the Assyrian badminton club constituted the research community. A total of 12 players were present in the research community. The badminton players falling within the age group of 15-17 years for the season 2020-2021 were recruited as the participants for the study. A total of five players were selected as the participant
... Show More