The theory of Topological Space Fiber is a new and essential branch of mathematics, less than three decades old, which is created in forced topologies. It was a very useful tool and played a central role in the theory of symmetry. Furthermore, interdependence is one of the main things considered in topology fiber theory. In this regard, we present the concept of topological spaces α associated with them and study the most important results.
This paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
Abstract This paper is devoted to introduce weak and strong forms of fibrewise fuzzy u-topological spaces, namely the fibrewise fuzzy q-u-topological spaces, weakly fibrewise fuzzy q-u-topological spaces and strongly fibrewise fuzzy q-utopological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy q-u-topological spaces and strongly fibrewise fuzzy q-utopological spaces.
In this work we explain and discuss new notion of fibrewise topological spaces, calledfibrewise soft ideal topological spaces, Also, we show the notions of fibrewise closed soft ideal topological spaces, fibrewise open soft ideal topological spaces and fibrewise soft near ideal topological spaces.
In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
We introduce and discus recent type of fibrewise topological spaces, namely fibrewise bitopological spaces, Also, we introduce the concepts of fibrewise closed bitopological spaces, fibrewise open bitopological spaces, fibrewise locally sliceable bitopological spaces and fibrewise locally sectionable bitopological spaces. Furthermore, we state and prove several propositions concerning with these concepts.
We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
The aim of this paper is to introduce and study some of the Fibrewise minimal regular,Fibrewise maximal regular, Fibrewise minimal completely regular, Fibrewise maximal completely regular, Fibrewise minimal normal, Fibrewise maximal normal, Fibrewise minimal functionally normal, and Fibrewise maximal functionally normal. This is done by providing some definitions of the concepts and examples related to them, as well as discussing some properties and mentioning some explanatory diagrams for those concepts.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.