Zirconia ceramic restoration (ZCR) has a higher fracture incidence rate than metal ceramic restoration. Different surface treatments were used to improve fracture performance of ZCR such as grit blasting (GB) by aluminium oxide powder. This type of surface treatment generate residual stresses on veneering ceramic causing crack initiation and ending with a fracture. In order to overcome the stress generated by GB, zirconia surface coating is used as a surface treatment to improve fracture resistance and to accommodate stresses along the ZCR layers. Fifty zirconia ceramic crowns were fabricated and divided according to the type of surface treatment into three groups; the first group is (ZG), involving 20 cores were coated with a mixture of partially-sintered zirconia powder (PZP) and glaze ceramic powder; the second group is (ZL), including of 20 cores were coated with PZP and liner ceramic paste. The third group is grit blasting (GB), preparing of 10 fully sintered cores at 1350 °C which then abraded by 50 µm aluminium oxide powder. The groups ZG and ZL were further subdivided into ZG26, ZG47, ZL26 and ZL47 based on two PZP sizes (47 and 26 µm). Each treated core was veneered with the veneering ceramic layer. Fracture resistance (FR) was measured by the universal testing machine. Finite element analysis (FEA) was used to simulate the stress distributions on the coated and non-coated zirconia crown models. The ZG47 group had higher FR (647.92 ± 97.33 N) and a significant difference (P < 0.00) compared to GB and other coated groups. The FEA exhibited lower and evenly distributed stresses of the zirconia glaze model than the zirconia liner and the non-coated models. The ZG47 coating considered as an alternative method to GB treatment which increases the FR which significantly improved the clinical performance of the ZCR.
An experimental and theoretical investigation of three phase direct contact heat transfer by evaporation of refrigerant drops in an immiscible liquid has been carried out. Refrigerant Rl2 and R134a were used for the dispersed phase, while water and brine were the immiscible continuous phase. A numerical analysis is presented to predict the temperature distribution throughout the circular test column radially and axially is achieved. Experimental measurements of the temperature distribution have been compared with the numerical results and are discussed .A comparison between the experimental and theoretical results showed acceptable agreement and applicability of the derived equations. Comparison with other related work showed similar beh
... Show MoreAbstract
We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-squar
... Show MoreThe goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
Compaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.
In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.
The results showed very good correlation between the values obtained from some publ
... Show MoreObjectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was tr
... Show MoreBackground: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the
... Show MoreBackground: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the therm
... Show MoreAbstract
Magnetic abrasive finishing (MAF) is one of the advanced finishing processes, which produces a high level of surface quality and is primarily controlled by a magnetic field. This paper study the effect of the magnetic abrasive finishing system on the material removal rate (MRR) and surface roughness (Ra) in terms of magnetic abrasive finishing system for eight of input parameters, and three levels according to Taguchi array (L27) and using the regression model to analysis the output (results). These parameters are the (Poles geometry angle, Gap between the two magnetic poles, Grain size powder, Doze of the ferromagnetic abrasive powder, DC current, Workpiece velocity, Magnetic poles velocity, and Finishi
... Show More