Preferred Language
Articles
/
KhZ2b4cBVTCNdQwCLkpS
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 24 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Highlighting the Treatment Regimens used in COVID-19 epidemic in Iraq with Special Regards to Vitamin D
...Show More Authors

Coronavirus disease 2019 (COVID-19) is a flu-like infection caused by a novel virus known as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). After the widespread around the world, it was announced by the World Health Organization (WHO) as a global pandemic. The symptoms of COVID-19 may arise within 2 weeks and the severity ranged from mild with signs of respiratory infection to severe cases of organ failure and even death. Management of COVID-19 patients includes supportive treatment and pharmacological medications expected to be effective with no definitive cure of the disease. The aims of this study are highlighting the management protocol and supportive therapy especially vitamin D and manifesting the clinical symptoms b

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Mar 09 2023
Journal Name
Plos One
A cross-sectional analysis of the predictors of COVID-19 vaccine uptake and vaccine hesitancy in Iraq
...Show More Authors
Background

Vaccine hesitancy poses a significant risk to global recovery from COVID-19. To date however, there is little research exploring the psychological factors associated with vaccine acceptability and hesitancy in Iraq.

Aim

To explore attitudes towards COVID-19 vaccination in Iraq. To establish the predictors of vaccine uptake and vaccine hesitancy in an Iraqi population.

Methods

Using a cross-sectional design, 7,778 participants completed an online questionnaire exploring their vaccination status, likelihood of infection, perc

... Show More
View Publication
Scopus (15)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Fri Dec 03 2021
Journal Name
Baghdad Journal Of Biochemistry And Applied Biological Sciences
A clinical-statistical study on COVID-19 infection and death status at the Alshifaa Healthcare Center/ Baghdad
...Show More Authors

Background: COVID-19 is an ongoing disease that caused, and still causes, many challenges for humanity. In fact, COVID-19 death cases reached more than 4.5 million by the end of August 2021, although an improvement in the medical treatments and pharmaceutical protocols was obtained, and many vaccines were released. Objective: To, statistically, analyze the data of COVID-19 patients at Alshifaa Healthcare Center (Baghdad, Iraq). Methods: In this work, a statistical analysis was conducted on data included the total number, positive cases, and negative cases of people tested for COVID-19 at the Alshifaa Healthcare Center/Baghdad for the period 1 September – 31 December 2020. The number of people who got the test was 1080, where 424 w

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Sep 11 2020
Journal Name
Egyptian Journal Of Medical Human Genetics
Evaluating of the association between ABO blood groups and coronavirus disease 2019 (COVID-19) in Iraqi patients
...Show More Authors
Abstract<sec> <title>Background

Susceptibility to the pandemic coronavirus disease 2019 (COVID-19) has recently been associated with ABO blood groups in patients of different ethnicities. This study sought to understand the genetic association of this polymorphic system with risk of disease in Iraqi patients. Two outcomes of COVID-19, recovery and death, were also explored. ABO blood groups were determined in 300 hospitalized COVID-19 Iraqi patients (159 under therapy, 104 recovered, and 37 deceased) and 595 healthy blood donors. The detection kit for 2019 novel coronavirus (2019-nCoV) RNA (PCR-Fluorescence Probing) was used in the diagnosis of disease.

< ... Show More
View Publication
Scopus (29)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Mon Oct 09 2023
Journal Name
Journal Of Legal Sciences
Experimental Article
...Show More Authors

Due to its safety, low cost, real-time nature, and widespread availability, ultrasound has been employed as a diagnostic technique for numerous intraocular disorders. Unfortunately, speckle artifact that depends on the tissue is seen in ultrasound imaging. In this study, we present a technique for lowering speckle noise and enhancing ultrasound images to enhance human diagnostic performance. This technique combines the undecimated wavelet transform (UDWT) with a wavelet coefficient mapping function, which was utilized to improve the contrast of the denoised images acquired from the first component after the noise was removed using the UDWT. This technique can be used to enhance the visual quality of medical photographs as well as to enha

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Sun Dec 20 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The tax examination by using some statistical methods: An applied research in the General Commission of taxes
...Show More Authors

this research aims at a number of objectives including Developing the tax examination process and raise its efficiency without relying on comprehensive examination method using some statistical methods in the tax examination and Discussing the most important concepts related to the statistical methods used in the tax examination and showing its importance and how they are applied. the research represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side Some statistical methods applied to the sample of the final accounts for the contracting company (limited) and the pharmaceutical industry (

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 19 2024
Journal Name
Research Journal Of Pharmacy And Technology
Serum Levels of Fetuin-A, Ischemia-modified Albumin (IMA), and Ferritin in Hospitalized patients with severe COVID-19. A Case-control Study
...Show More Authors

Objective: To measure the serum levels of Fetuin-A, ischemia-modified albumin (IMA), and ferritin in hospitalized patients with severe COVID-19in Baghdad, Iraq. Moreover, to determine these biomarkers' cut-off valuesthat differentiate between severely ill patients and control subjects. Methods: This case-control study was done from 15 September to the end of December 2021 and involved a review of the files and collectionof blood samples from patients (n=45, group1) hospitalized in COVID-19 treatment centersbecause of severe symptoms compared tohealthy subjects as controls (n=44, group2). Results: Fetuin-A serum levels were not statistically different between patients and controls. In contrast, IMA and ferritin levels were significan

... Show More
Scopus Crossref
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 26 2025
Journal Name
Applied Data Science And Analysis
Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis
...Show More Authors

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id

... Show More
View Publication
Crossref