The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.
Community pharmacists faced more complex challenges in meeting patients’ medication needs during the pandemic than previously reported in the literature. Objectives To explore the perception and abilities of community pharmacists in managing patients’ needs in terms of medication dispensing during the pandemic, and to examine its effect on improving the patients’ situations. Materials and Methods A cross-sectional study design, validated by 30 experts, was conducted using an electronic survey (Google Form) to assess the effect of the dispensing practice of Iraqi community pharmacists on the patient’s clinical outcomes during the pandemic. The survey was distributed on professional pharmacist’s social media platforms from December
... Show MoreBackground: The SARS-CoV-2 virus causes COVID-19, a respiratory syndrome. It causes inflammation and damages several organs in the body. miRNAs play a role in regulating the infection resulting from SARS-CoV-2. MicroRNA-155, a kind of microRNA linked to viral defences, can affect the immune responses during COVID-19. Objectives: Examination of the involvement of microRNA-155 in the development and severity of COVID-19, as well as finding the correlation between microRNA-155 and viral load (copies/mL) in severe cases of the disease. Materials and Method: A case-control research study was performed between October 2022 and June 2023. It included a cohort of 120 hospitalised individuals with severe cases of COVID-19, together with 115 individu
... Show MoreBackground: COVID-19 is a disease that started in Wuhan/China in late 2019 and continued through 2020 worldwide. Scientists worldwide continue to research to find vaccines, treatments, and medication for this disease. Studies also conenue to find the pathogenicity and epidemiology mechanisms. Materials and Methods: In this work, we analyzed cases obtained from Alshifaa center in Baghdad/Iraq for 23/2/2020-31/5/2020 with total instances of 797, positive cases of 393, and death cases of 30. Results: Results showed that the highest infection cases were among people aged between 41-45. Also, it was found that males' number of cases was more than females. In contrast, death cases were significantly higher in males than females. It was not
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreThe post-Corona Covid-19 world is not the world before it, the problem of perception of personality traits with two axes: the characteristics of psychological and social compatibility, and the second aspect the mental disorder during the pandemic, and the accompanying precautions and prohibitions during the academic year 2020 AD. The aim of the research is to reveal the perception of the personal characteristics of Bisha University employees (students and faculty) during the Corona Covid-19 pandemic, and to reveal statistically significant differences in the perception of the personality traits of Bisha’s members during the Covid 19 according to the scientific qualification variables (female students -faculty members), marital st
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreThis literary review addresses the status of the most famous Israeli writer, Amos Oz, through the analysis of relevant articles that highlight various aspects of his literary and political orientations, reflecting his ideological and social background. Oz's literature encompasses a mix of political orientations that many critics view as extreme, while others see them as moderate stances indicative of the author's awareness. And these are what strengthened his literary status in modern Hebrew literature.These trends emphasized the contribution of Oz's works to shaping Israeli cultural consciousness and reflect the challenges facing identity in multiple contexts. He was an advocate for equality between Palestinians and Israelis and
... Show More