Preferred Language
Articles
/
KRiNEpUBVTCNdQwCLSVc
Deep Bayesian for Opinion-target identification
...Show More Authors

The use of deep learning.

View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (11)
Scopus
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (23)
Crossref
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Transport Assessment Using Bayesian Method to Determine Ride-Hailing in Kula Lumpur: A Case Study
...Show More Authors

This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
Laplacian Operator as Speaker Identification Parameter
...Show More Authors

New speaker identification test’s feature, extracted from the differentiated form of the wave file, is presented. Differentiation operation is performed by an operator similar to the Laplacian operator. From the differentiated record’s, two parametric measures have been extracted and used as identifiers for the speaker; i.e. mean-value and number of zero-crossing points.

View Publication Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Pakistan Journal Of Medical & Health Sciences
Entamoeba histolytica, identification in asymptomatic infection
...Show More Authors

Background: Reliable detection the etiological agent of amoebic dysentery and extra-intestinal amoebiasis have Public health importance specially in asymptomatic human and animals, Since the acquisition of pet dogs in the recent period has become widespread in our city. Aim: To give correct perception of infection rate in asymptomatic individuals (human and domestic dogs) for the first aspect and about detection and diagnosis of the pathogenic species of Entamoeba histolytica from another morphologically similar and commensal one using the molecular technique in stool samples of asymptomatic individuals the second aspect. Methods: During the study period from the beginning of September 2020 to the end of February 2021, a total of 95 stool s

... Show More
Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
Journal Of The College Of Languages (jcl)
Lexical Bundles: Identification and Distinguishing Features
...Show More Authors

It is not often  easy to identify a certain group of words as a lexical bundle, since the same set of words can be, in different situations, recognized as idiom,  a collocation, a lexical phrase or a lexical bundle. That is, there are many cases where the overlap among the four types is plausible. Thus, it is important to extract the most identifiable and distinguishable characteristics with which a certain group of words, under certain conditions, can be recognized as a lexical bundle, and this is the task of this paper.

View Publication Preview PDF