Preferred Language
Articles
/
KBhBL5UBVTCNdQwC1iqD
Enhancing the Removal of Methyl Orange Dye by Electrocoagulation System with Nickel Foam Electrode – Optimization with Surface Response Methodology
...Show More Authors

Azo dyes like methyl orange (MO) are very toxic components due to their recalcitrant properties which makes their removal from wastewater of textile industries a significant issue. The present study aimed to study their removal by utilizing aluminum and Ni foam (NiF) as anodes besides Fe foam electrodes as cathodes in an electrocoagulation (EC) system. Primary experiments were conducted using two Al anodes, two NiF anodes, or Al-NiF anodes to predict their advantages and drawbacks. It was concluded that the Al-NiF anodes were very effective in removing MO dye without long time of treatment or Ni leaching at in the case of adopting the Al-Al or NiF-NiF anodes, respectively. The structure and surface morphology of the NiF electrode were investigated by energy dispersive X-ray (EDX), and field emission scanning electron microscopy (FESEM). Response surface methodology was utilized to predict the optimum conditions by considering current density with 4–8 mA/cm2 range, NaCl concentration in the range of 0.5–1 g/L, and electrolysis time of 10–30 min as controlling parameters. A very high MO dye removal percentage was achieved (97.74%) at 8 mA/cm2, 1 g/L of NaCl within 30 min of electrolysis and consumed energy was 36.299 kWh/kg. This cost-effective EC system with the Al-NiF anodes besides Fe foam as cathode approved its high efficiency in removing MO dye with moderate amounts of NaCl due to the excellent 3D structure of these foam electrodes which highlight foam electrodes as an excellent choice for EC system in an environmentally friendly pathway.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Removal Color Study of Toluidine Blue dye from Aqueous Solution by using Photo-Fenton Oxidation
...Show More Authors

The degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 11 2021
Journal Name
Nano Hybrids And Composites
Far Infrared Laser Detector Based on Multi-Walled Carbon Nanotubes and Blend of (Polyaniline - Polymethyl Methacrylate) Polymers with Methyl Blue Dye for Photoconductive Applications
...Show More Authors

Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector

... Show More
View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Studying the Effect of Magnesium Oxide Nanoparticles Prepared on the Surface of Poly Methyl Methacrylate
...Show More Authors

          In this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis.  Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Study the Catalytic Activity of CeO2 Catalyst for the Oxidative Degradation of Orange G Dye in Aqueous Solution
...Show More Authors

The oxidative degradation of Orange G dye by nanosized CeO2 catalyst has been performed in this study. The catalyst was prepared by precipitation method. Various characterization techniques were carried out to study the physical and chemical properties of the synthesized catalyst. The XRD result confirms well the formation of CeO2 cubic phase.  The FTIR result showed the effect of calcination temperature for CeO2 was clearly observed due to reduction in band intensity compared to uncalcined Ce nitrate sample. Meanwhile, the diffused reflection spectra recorded reflection spectra at 414 nm with an energy gap of 3.2 ev. The decolorization of Orange G dye by oxidation process were carried out  unde

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 15 2021
Journal Name
Energies
Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System
...Show More Authors

A twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, numb

... Show More
View Publication Preview PDF
Scopus (56)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Improvement the Superconducting properties of TlBa2 Ca2 Cu3xNix O 9-δ superconducting compound by partial substitution of copper with nickel oxide on the
...Show More Authors

View Publication
Scopus (26)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reuse of Brick Waste as a Cheap-Sorbent for the Removal of Nickel Ions from Aqueous Solutions
...Show More Authors

   The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three i

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology & Innovation
Cadmium removal using a spiral-wound woven wire meshes packed bed rotating cylinder electrode
...Show More Authors

The effect of electrolysis operating parameters on the removal efficiency of cadmium from a simulated wastewater was studied by adopting response surface methodology combined with Box–Behnken Design. As a new electrode design, spiral-wound woven wire mesh rotating cylinder electrode was used for cadmium removal. Current (240–400 mA), rotation speed (200–1000 rpm), initial cadmium concentration (200–600ppm), and cathode mesh number (30–60) were chosen as independent variables while the removal efficiency of cadmium was considered as a response function. The results revealed that the rotation speed has the major effect on the removal efficiency of cadmium. Regression analysis showed good fit of the experimental data to the second-or

... Show More
View Publication Preview PDF
Scopus (28)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Treatment of Dairy Wastewater by Electrocoagulation using Iron Filings Electrodes
...Show More Authors

This study investigated the treatment of dairy wastewater using the electrocoagulation method with iron filings as electrodes. The study dealt with real samples collected from local factory for dairy products in Baghdad. The Response Surface Methodology (RSM) was used to optimize five experimental variables at six levels for each variable, for estimating chemical oxygen demand (COD) removal efficiency. These variables were the distance between electrodes, detention time, dosage of NaCl as electrolyte, initial COD concentration, and current density. RSM was investigated the direct and complex interaction effects between parameters to estimate the optimum values. The respective optimum value was 1 cm for the distance between electrodes, (6

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Sci. Int.(lahore)
IMPROVING NO2 SENSITIVITY OF POROUS SILICON BY FUNCTIONALIZATION ITS SURFACE WITH COPPER AS CATALYST
...Show More Authors

In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p

... Show More