Background: Inflammatory bowel disease (IBD) is a collection of chronic, recurrent inflammatory illnesses of the gastrointestinal system, including Crohn's disease (CD). Infliximab is one of the biological medications used to treat CD. Therapeutic drug monitoring has evolved as a treatment in IBD, aiming to optimize benefit while meeting more demanding, objective end criteria. Objective: To determine the achievement of target trough level (TL), develop anti-drug antibodies (ADAs) to infliximab, assess response to therapy, and study TL relations with different variables. Methods: The present study was cross-sectional and conducted from May 2022 to November 2022. It included 40 CD patients allotted into 2 groups: group 1 patients achieved the TL target, and group 2 patients did not achieve the TL target. Results: Twenty-two patients achieved target TL, while 18 patients did not. Dose escalation is recommended for 11 patients, switching therapy for 15 patients, and continuing the same dosage regimen for 14 patients. In addition, erythrocyte sedimentation rate, C-reactive protein, serum calprotectin and ADAs were significantly lower in patients who achieved target infliximab TL. Only serum calprotectin can be used to predict the achievement of the target TL of infliximab. Conclusions: Therapeutic drug monitoring of infliximab to determine the TL and ADAs can help to explain why some patients do not respond to this drug. Serum calprotectin may be used as a novel marker to predict the TL and response to infliximab.
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
We studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show MoreElectrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.
This investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreAlthough its wide utilization in microbial cultures, the one factor-at-a-time method, failed to find the true optimum, this is due to the interaction between optimized parameters which is not taken into account. Therefore, in order to find the true optimum conditions, it is necessary to repeat the one factor-at-a-time method in many sequential experimental runs, which is extremely time-consuming and expensive for many variables. This work is an attempt to enhance bioactive yellow pigment production by Streptomyces thinghirensis based on a statistical design. The yellow pigment demonstrated inhibitory effects against Escherichia coli and Staphylococcus aureus and was characterized by UV-vis spectroscopy which showed lambda maximum of
... Show More