Abstract:Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too. The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
Porous silicon was prepared by using electrochemical etching process. The structure, electrical, and photoelectrical properties had been performed. Scanning Electron Microscope (SEM) observations of porous silicon layers were obtained before and after rapid thermal oxidation process. The rapid thermal oxidation process did not modify the morphology of porous layers. The unique observation was the pore size decreased after oxidation; pore number and shape were conserved. The wall size which separated between pore was increased after oxidation and that effected on charge transport mechanism of PS
This paper demonstrates the spatial response uniformity (SRU) of two types of heterojunctions (CdS, PbS /Si) laser detectors. The spatial response nonuniformity of these heterojunctions is not significant and it is negligible in comparison with p+- n silicon photodiode. Experimental results show that the uniformity of CdS /Si is better than that of PbS /Si heterojunction
For modeling a photovoltaic module, it is necessary to calculate the basic parameters which control the current-voltage characteristic curves, that is not provided by the manufacturer. Generally, for mono crystalline silicon module, the shunt resistance is generally high, and it is neglected in this model. In this study, three methods are presented for four parameters model. Explicit simplified method based on an analytical solution, slope method based on manufacturer data, and iterative method based on a numerical resolution. The results obtained for these methods were compared with experimental measured data. The iterative method was more accurate than the other two methods but more complexity. The average deviation of
... Show MoreThe silicon carbide/carbon fiber (SiC/CF) hybrid fillers were introduced to improve the electrical and thermal conductivities of the epoxy resin composites. Results of Fourier transform infrared spectroscopy revealed that the peaks at 3532 and 2850 cm−1 relate to carboxylic acid O–H stretching and aldehyde C–H stretching appearing deeper with an increased volume fraction of SiC. Scanning electron microscopic image shows a better interface bonding between the fiber and the matrix when the volume fraction of SiC particles are increased. As frequency increases from 102 Hz to 106 Hz, dielectric constants decrease slightly. Dissipation factor (tan δ) values keep low a
... Show MoreIn this work, an estimation of the key rate of measurement-device-independent quantum key distribution (MDI-QKD) protocol in free space was performed. The examined free space links included satellite-earth downlink, uplink and intersatellite link. Various attenuation effects were considered such as diffraction, atmosphere, turbulence and the efficiency of the detection system. Two cases were tested: asymptotic case with infinite number of decoy states and one-decoy state case. The estimated key rate showed the possibility of applying MDI-QKD in earth-satellite and intersatellite links, offering longer single link distance to be covered.
Objectives: The research aims to demonstrate the integration between Quantum Computing (QC) and Predictive Analysis (PA) and their role in reducing costs while achieving Sustainable Development Goals (SDGs). The study addresses the inefficiencies in calculating and measuring product costs under traditional systems and examines how QC and PA can enhance cost reduction and product quality to better meet customer needs. Additionally, the research seeks to strengthen the theoretical framework with practical applications, illustrating how this integration improves a company’s competitive position while promoting social, environmental, and economic sustainability. Methods: The study employs a descriptive analytical approach, focusi
... Show MoreThe research was conducted in a plastic greenhouse at the College of Agricultural Engineering Sciences, University of Baghdad - Jadiriyah Campus, during the 2021-2022 season, to study the effect of phosphorus, silicon, and citric acid on pepper plants using a factorial experiment design with three replicates. The first factor had three levels of phosphorus (0, 160, and 320 kg P2O5 per hectare), the second factor had three levels of potassium silicate (0, 75, and 100 kg per hectare), and the third factor had four levels of citric acid (0, 2, 4, and 6 kg per hectare). The statistical analysis showed that treatment P2S2C1 resulted in an increase
In this work, two different laser dye solutions were used to host highly-pure silicon nitride nanoparticles as scattering centers to fabricate random gain media. The laser dye was dissolved in three different solvents (ethanol, methanol and acetone) and the final results were obtained for methanol only. The silicon nitride nanoparticles were synthesized by dc reactive magnetron sputtering technique with average particle size of 35 nm. The random gain medium was made as a solid rod with high spectral efficiency and low production cost. Optical emission with narrow linewidth was detected at 532-534 nm as 9 mg of silicon nitride nanoparticles were added to the 10 -5 M dye solution. The FWHM of 0.3 and 3.52 nm was determined for Rhodamine B and
... Show More