One of the major problems in modern construction is the accumulation of construction and demolition waste; this study thus examines the consumption of waste brick in concrete based on the use of blended nano brick powder as replacement for cement and as a fine aggregate. Seven concrete mixes were developed according to ACI 211.1 using recycled waste brick. Nano powder brick at 0, 5, and 10% was used as a replacement by cement weight, with other mixes featuring 10, 20, and 30% partial replacement by volume of river sand with brick. The experimental results for replacement of cement with nano brick powder showed an enhancement in mechanical properties (compressive, flexural, and tensile strength) at 7, 28, 90, and 180 days for the 10% replacement level, while the mixes with 20% brick sand replacement also showed an improvement in mechanical properties.
A new hetrocyclic liquid crystal compounds containing 1,3,4-oxadiazole with different substituted in para position (Bromo, Chloro, Nitro and Methyl) were synthesized and characterized by melting points, FTIR Spectroscopy and 1HNMR spectroscopy for [Cl-SR6] and [NO2-SR6] compounds. The liquid crystalline properties of the synthesized compounds were studied by using hot-stage polarizing optical microscopy (POM), so they determined the transition enthalpies and entropies by using differential scanning calorimetery (DSC). All of the compounds show mesomorphic properties. The compounds [Br-SR6], [Cl-SR6] and [NO2SR6] exhibit an enantiotropic dimorphism smectic (Sm) phase, while the compounds [MeSR6] showed nematic (N) phase throw cooli
... Show MoreOne of the bigger problems in drinking water is disinfection by-products (DBPs) that come from chlorinated disinfection. This study’s goal was to evaluate the drinking water in Al-Yarmouk Teaching Hospital, Ibn Sina Hospital and Ibn-Al-Nafis Hospital. Samples were collected between October 2018 and September 2019. Physical and chemical characteristics of the water were studied, including (temperature, hydrogen ion (pH), total dissolved solids (TDS), electrical conductivity (EC), turbidity, free residual chlorine, total organic carbon (TOC), total trihalomethanes (THMs), total halo acetic acid (THAAs)). Data analysis showed the highest value of study temperature, pH, TDS, EC, turbidity, free residual chlorine and TOC which was
... Show MoreCerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreThis paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr
... Show MoreNasiriya field is located about 38 Km to the north – west of Nasiriya city. Yammama, a giant lower cretaceous reservoir in Nasiriya field which is lithologically formed from limestone. Yammama mainly was divided into three main reservoir units YA, YB1, YB2 and YB3 and it is separated by impermeable layers of variable thickness. An accurate petro physical evolution of the reservoir is of great importance perform an excellent geological model so that four petro physical properties which are shale volume, porosity, water saturation and permeability was re-evaluated. The volume of shale was calculated using the density and neutron logs (VSH-DN) rather than using gamma ray log because of presence a uranium content in the formation that make
... Show MoreSolutions of dyes Rhodamine 6G (Rh6G) and Coumarin480(C480) were prepared at five concentrations (1x10-3, 5x10-4, 1x10-4, 5x10-5 and1x10-5) mol/l, the mixing was stirred to obtain on a homogenous solution, the(poly methyl-methacrylate) (PMMA) was solved by chloroform solvent with certain ratio, afterward (PMMA+Rh6G) and (PMMA+C480) thin films were prepared by casting method on glass block which has substrate with dimensions (7.5 x2.5)cm2, the prepared samples were left in dark place at room temperature for 24 hours to obtain uniform and homogenous thin films. UV-VIS absorption spectra, transmission spectra and fluorescence spectra were done to measure linear refractive index and linear absorption coefficient. The nonlinear optical proper
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40 -bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30 -dimethyl-[1,10 -biphenyl]-4,40 -diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1 H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed
... Show MoreManganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show MoreThe Invar effect in 3D transition metal such as Ni and Mn, were prepared on a series composition of binary Ni1-xMnx system with x=0.3, 0.5, 0.8 by using powder metallurgy technique. In this work, the characterization of structural and thermal properties have been investigated experimentally by X-ray diffraction, thermal expansion coefficient and vibrating sample magnetometer (VSM) techniques. The results show that anonymously negative thermal expansion coefficient are changeable in the structure. The results were explained due to the instability relation between magnetic spins with lattice distortion on some of ferromagnetic metals.