Low-dimensional materials have attracted significant attention in developing and enhancing the performance of quantum well lasers due to their extraordinary unique properties. The optical confinement factor is one of the most effective parameters for evaluating the optimal performance of a semiconductor laser diode when used to measure the optical gain and current threshold. The optical confinement factor and the radiative recombination of single quantum wells (SQW) and multi-quantum wells (MQW) for InGaAsP/InP have been theoretically studied using both radiative and Auger coefficients. Quantum well width, barrier width, and number of quantum wells were all looked at to see how these things changed the optical confinement factor and radiative and non-radiative recombination coefficients for multi-quantum well structures. It was found that the optical confinement factor increases with an increase in the number of wells. The largest value of the optical confinement factor was determined when the number of wells was five at any width. The optical confinement coefficient was 0.23, 0.216, and 0.203 for the number of wells (3, 4, and 5) and well width (27, 19.5, and 15) nm, respectively. In addition, the radiative recombination coefficient increases with the width of the quantum well after 5 nm, and it is much bigger than that of its bulk counterparts.
Nuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreSilver sulfide and the thin films Ag2Se0.8Te0.2 and Ag2Se0.8S0.2 created by the thermal evaporation process on glass with a thickness of 350 nm were examined for their structural and optical properties. These films were made at a temperature of 300 K. According to the X-ray diffraction investigation, the films are polycrystalline and have an initial orthorhombic phase. Using X-ray diffraction research, the crystallization orientations of Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2 (23.304, 49.91) were discovered (XRD). As (Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2) absorption coefficient fell from (470-774) nm, the optical band gap increased (2.15 & 2 & 2.25eV). For instance, the characteristics of thin films made of Ag2Se0.8Te0.2 and Ag2Se0.8S0.2
... Show MoreCoumarin derivatives have shown different biological activities, such as antifungal, antibacterial antiinflammatory, and antioxidant activities, besides antibiotic resistance modulating effects, and anti-HIV, hepatoprotective, and antitumor effect. So, new coumarin derivatives (hydrazones and an amide) were synthesized through multisteps reactions. All the synthesized target compounds were characterized by FT-IR spectroscopy, 1HNMR analysis. The compounds then evaluated for their anti-bacterial activity by means of well-diffusion method against two gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae) and two gram-negative bacteria (E.coli and Pseudomonas aeruginosa). The highest activity was demonstr
... Show MoreTin oxide films (SnO2) of thickness (1 ?m) are prepared on glass substrate by post oxidation of metal films technique. Films were irradiated with Nd:YAG double frequency laser of wavelength (532 nm) pulses of three energies (100, 500, 1000) mJ. The optical absorption, transmission, reflectance, refractive index and optical conductivity of these films are investigated in the UV-Vis region (200-900) nm. It was found that the average transmittance of the films is around (80%) at wavelength (550 nm) and showed high transmission (? 90 %) in the visible and near infrared region. The absorption edge shifts towards higher energies, which is due to the Moss-Burstien effect and it lies at (4 eV). The optical band gap increased with increasing of ene
... Show MoreA study of the singlet and triplet states of two electron systems in the first excited state was performed using a simple quantum mechanical model, which assigns the 1s,and 2s orbital with two different variational parameters. Our results agree with a high level calculation used by Snow and Bills.
In this work, The effect of annealing treatment at different temperatures (373, 423 and 473) K and chemical treatment with talwen at different immersion time (40, 60 and 80) min on structural and optical properties of the bulk heterojunction (BHJ) blend copper phthalocyanine tetrasulfonic acid tetrasodium salt/poly dioxyethylenethienylene doped with polystyrenesulphonic acid (CuPcTs/PEDOT:PSS) thin films were investigated. The films were fabricated using spin coating technique. X-ray diffraction (XRD) measurements displayed only one peak at 2θ =4.5o corresponding to (001) direction which has dhkl larger than for standard CuPcTs. The dhkl increase then decrease with increasing annealing temperature and
the time of chemical treatment w
Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreIn this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreLaser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0
Structural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v