Abstract. Froth flotation is a solid-liquid separation technique that uses hydrophobicity as a driving force. Bacteria and other drinking water microorganisms tend to be hydrophobic and can be removed from water using this application. The biggest limitation against using froth flotation in the drinking water industry is the difficulty of producing froth without chemical frothers and holding bacteria in this froth without chemical collectors which deteriorate water taste and odor. Recently, researchers at the University of Sheffield described a method for producing froth using only water and compressed air. This has enabled froth flotation to be studied as an alternative to biocides for the removal of bacteria from drinking water. T
... Show MoreThe primary objective of this study is to manage price market items in the construction of walls for affordable structures with load-bearing hollow masonry units using the ACI 211.1 blend design with a slump range of 25-50 mm that follows the specification limits of IQS 1077. It was difficult to reach a suitable cement weight to minimum content (economic and environmental goal), so many trail mixtures were cast. A portion (10-20%) of the coarse aggregates was replaced with concrete, tile, and clay-brick waste. Finally, two curing methods were used: immersion under water as normal curing, and water spraying as it is closer to the field conditions. The recommendation in IQS 1077 to increase the curing period from 14 to 28 days was tak
... Show MoreThis paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
Based on a finite element analysis using Matlab coding, eigenvalue problem has been formulated and solved for the buckling analysis of non-prismatic columns. Different numbers of elements per column length have been used to assess the rate of convergence for the model. Then the proposed model has been used to determine the critical buckling load factor () for the idealized supported columns based on the comparison of their buckling loads with the corresponding hinge supported columns . Finally in this study the critical buckling factor () under end force (P) increases by about 3.71% with the tapered ratio increment of 10% for different end supported columns and the relationship between normalized critical load and slenderness ratio was g
... Show MoreUltraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show More