Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amount of energy, especially during the training phase. The transmission of big data between service providers, users and data centres emits carbon dioxide as a result of high power consumption. This chapter proposes a theoretical framework for big data analytics using computational intelligent algorithms that has the potential to reduce energy consumption and enhance performance. We suggest that researchers should focus more attention on the issue of energy within big data analytics in relation to computational intelligent algorithms, before this becomes a widespread and urgent problem.
Contracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi
... Show MoreIn this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability. The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) image
... Show MoreTransportability refers to the ease with which people, goods, or services may be transferred. When transportability is high, distance becomes less of a limitation for activities. Transportation networks are frequently represented by a set of locations and a set of links that indicate the connections between those places which is usually called network topology. Hence, each transmission network has a unique topology that distinguishes its structure. The most essential components of such a framework are the network architecture and the connection level. This research aims to demonstrate the efficiency of the road network in the Al-Karrada area which is located in the Baghdad city. The analysis based on a quantitative evaluation using graph th
... Show MoreBacteria strain H8, which produces high amount of exopolysaccharide (EPS), was isolated from soil, and identified as strain of Azotobacter chrococcum by its biochemical /physiological characteristics, EPS was extracted, partially purified and used as bioflocculant. The biochemical analysis of the partially purified EPS revealed that it was an alginate. analysis of EPS by Fourier transform infrared spectrometry (FTIR) show that the -OH groups present in bioflocculant are clearly seen at 3433.06 cm-1, the peaks attributed to the -CH3 groups present at 2916.17 cm-1 , and some distinct peaks such as carboxyl group showed strong absorption bands at 1604.66 cm-1, 1411.80 cm-1 and 1303.79 cm-1 indicate the chemical structure of alginate. The effe
... Show MoreIn this paper we proposed a new method for selecting a smoothing parameter in kernel estimator to estimate a nonparametric regression function in the presence of missing values. The proposed method is based on work on the golden ratio and Surah AL-E-Imran in the Qur'an. Simulation experiments were conducted to study a small sample behavior. The results proved the superiority the proposed on the competition method for selecting smoothing parameter.
The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and
... Show More