Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amount of energy, especially during the training phase. The transmission of big data between service providers, users and data centres emits carbon dioxide as a result of high power consumption. This chapter proposes a theoretical framework for big data analytics using computational intelligent algorithms that has the potential to reduce energy consumption and enhance performance. We suggest that researchers should focus more attention on the issue of energy within big data analytics in relation to computational intelligent algorithms, before this becomes a widespread and urgent problem.
The present study aims to investigate the long-term histopathological, and physiological effects of different concentrations of a commercially available energy drink (Tiger) on liver and kidney of young mice. Sixteen Balb/c male mice,6 -week old, were divided into 4 groups (n=4). Two groups consumed the energy drink at a concentration of 28µl energy drink/ml water. One group were killed after 10 days (T1), another group were killed after 20 days (T2). Other group of mice consumed the energy drink at a final concentration of 14µl/ml for 20 days (T3). The last group was provided only with water and served as control. Mice of all groups drank around 3 ml per day. The histopathological study on liver of treated groups showed many changes s
... Show MoreThe earth's surface comprises different kinds of land cover, water resources, and soil, which create environmental factors for varied animals, plants, and humans. Knowing the significant effects of land cover is crucial for long-term development, climate change modeling, and preserving ecosystems. In this research, the Google Earth Engine platform and freely available Landsat imagery were used to investigate the impact of the expansion and degradation in urbanized areas, watersheds, and vegetative cover on the land surface temperature in Baghdad from 2004 to 2021. Land cover indices such as the Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Built-up Index (NDVI, NDWI, an
... Show MoreIn order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
The flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxi
... Show MoreBackground: The cells of periodontium contain many intracellular enzymes like (alkaline phosphatase ALP) that are released outside into the saliva and gingival crevicular fluid (GCF) after destruction of periodontal tissue. The aim of study was to determine the activity of this enzyme in saliva and its relation to the salivary flow rate, PH and clinical periodontal parameters in patients with chronic periodontitis. Subject, Materials and methods: Sample population consist of 75 individuals ;divided into four groups , the first group (15):control subject, the second group (20):mild chronic periodontitis, the third group(20) moderate chronic periodontitis and the fourth group (20) sever chronic periodontitis, Measurements of plaque index (PL
... Show MoreThe impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di
... Show More