Purpose: To use the L25 Taguchi orthogonal array for optimizing the three main solvothermal parameters that affect the synthesis of metal-organic frameworks-5 (MOF-5). Methods: The L25 Taguchi methodology was used to study various parameters that affect the degree of crystallinity (DOC) of MOF-5. The parameters comprised temperature of synthesis, duration of synthesis, and ratio of the solvent, N,N-dimethyl formamide (DMF) to reactants. For each parameter, the volume of DMF was varied while keeping the weight of reactants constant. The weights of 1,4-benzodicarboxylate (BDC) and Zn(NO3)2.6H2O used were 0.390 g and 2.166 g, respectively. For each parameter investigated, five different levels were used. The MOF-5 samples were synthesized using the solvothermal reaction method, and successful synthesis was confirmed with x-ray diffraction (XRD), microscopy, Fourier transform infrared spectroscopy (FTIR) and energy-dispersive x-ray spectroscopy (EDS). The DOC obtained via XRD served as a parameter of objective quality. Results: The optimum conditions that gave the highest DOC were synthesis temperature of 130 °C, duration of 60 h, and a vehicle volume of 50 mL, with optimum Brunauer-Emmett-Teller surface area (BET -SA) of 800 m2/g. All the three synthesis parameters significantly influenced the DOC of the synthesized MOF-5 (p < 0.05). Sub-optimal conditions resulted in distorted MOFs, products that deviated from MOF-5 specifications, or MOF-5 with low DOC. Conclusion: Based on DOC and BET-SA, the best conditions for synthesis of MOF-5 when using Taguchi OA, were temperature of 130 °C, duration of 60 h, and a DMF volume of 50 mL.
The work includes synthesis of 1,2,3-triazoles via click conditions and using the microwave irradiation starting from two synthesized azides: 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide (5) and perfluorobutylethyl azide (10) and different terminal alkynes. It also includes microwave enhanced synthesis of tetrazoles via the reaction of two synthesized azides i.e., perfluorobutylethyl azide (10) and 1,5-diazidopentane (13) with benzoyl cyanide. Most of the prepared compounds have been characterized by: TLC, FT-IR, 1H NMR, 13C NMR, LC-MS and microelemental analysis
Number of new polyester and polyamide are prepared as derivatives from 5,5`-(1,4-phenylene)-bis-(1,3,4-thiadiazole-2-amine) [C1], three series of heterocyclic compounds were synthesized.The first series includes the Schiff base [C2] prepared from the reaction between compound [C1] with p-hydroxy benzaldehyde in presence of acetic acid and absolute ethanol , then these derivatives have reaction with maleic anhydride , phthalic anhydride and sodium azide, respectively to obtain the compounds [C3-5] contaning (oxazepine and tetrazole) rings.The third series of compounds [C1-5] has transformed to their polymers [C6-15] by reaction with adipoyl chloride and glutroyl chloride , respectively. The reaction was followed by T.L.C and ident
... Show MoreIn the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Abstract Organic compounds with pyrazole cores have a variety of uses, notably in the pharmaceutical and agrochemical sectors. The interest in creating pyrazole compounds, examining their many features, and looking for potential uses is growing. Our work has concert with synthesis of chalcones and pyrazolines, then finally pyrazoline-aniline derivatives and evaluation their anti-inflammatory, antibacterial and antifungal activities
Objective: Hesperidin (HSP) is a pharmacologically active organic compound found in citrus fruits and peppermint. We synthesized a new HSP derivative by reacting it with 5-Amino-1,3,4-thiadiazole-2-thiol in acetic acid. Methods: This compound was characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and electron impact mass spectra. A molecular docking study explores the predicted binding of the compound and its possible mode of action. Bioavailability, site of absorption, drug mimic, and topological polar surface was predicted using absorption, distribution, metabolism, and excretion (ADME) studies. Results: The docking study predicts that the new compound binds to the active sites of Aurora-B
... Show MoreSynthesis of 2-mercaptobenzothiazole (A1) is performed from the reaction of o-aminothiophenol and carbon disulfide CS2 in ethanol under basic condition. Compound (A1) is reacted with chloro acetyl chloride to give compound (A2). Hydrazide acid compound (A3) is obtained from the reaction of compound (A2) with hydrazine hydrate in ethanol under reflux in the presence of glacial acetic acid .The reaction of hydrazide acid compound (A3) with ethyl acetoacetate gives pyrazole compound (A4). The new hydrazone compound (A5) was prepared from the reaction of compound (A3) with benzaldehyde. Reaction of compound
... Show More