We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD) to estimate the parameters and because of the nonlinear relationship between the parameters, numerical algorithms were used to find the estimates of the two methods. They are Newton-Raphson (NR) and Nelder mead (NM) algorithms to improve the estimators, and a Monte Carlo simulation experiment was conducted to evaluate the performance of the two algorithms' estimates, and the average integrated error criterion (IMSE) was used to compare the survival function estimates and the failure rate. The results showed the efficiency of the maximum likelihood method estimates and least squares developed using the two algorithms (NR, NM) where their results were close, and this shows the new distribution efficiency (EEPF) for modeling survival data.
This study was conducted in Diyala province for renal failure patients during the periods August 2015 - April 2016. Hundred renal failure patients were enrolled in the study after diagnosis by the consultant physician at Ibn-Sina Center for Dialysis in Baquba Teaching Hospital according to criteria adopted by the World Health Organization for diagnosis of renal failure disease. The number of males in patient’s sample was 61 (61%) and females was 39 (39%) with an age range of 10 – 88 year (44.7 ± 22.1 year). In addition, the study included 50 apparently healthy individuals and considered as a group control, in which the number of males and females was similar (25 individual), with an age range of 18 – 88 year (51.7 ± 17.3 year). The
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreNuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreThis paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
The m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.