The aim of this investigation is to evaluate the experimental and numerical effectiveness of a new kind of composite column by using Glass Fiber‐Reinforced Polymer (GFRP) I‐section as well as steel I‐section in comparison to the typical reinforced concrete one. The experimental part included testing six composite columns categorized into two groups according to the slenderness ratio and tested under concentric axial load. Each group contains three specimens with the same dimensions and length, while different cross‐section configurations were used. Columns with reinforced concrete cross‐section (reference column), encased GFRP I‐section, and encased steel I‐section were adopted in each group. The modes of failure, axial loads, axial displacements, and strains in the concrete were the main experimental results. The observed typical mode of failure was a compression failure, and the concrete cover was splitting mostly at the column mid‐height. The load‐carrying capacities of the long composite specimens with the encased GFRP and steel I‐sections increased by approximately 11.2% and 15.8%, respectively, compared to the control column. However, these improvements were 12.0% and 24.3% in the case of short composite columns. In short columns, the failure load increased by 11% in comparison to the long ones. Numerical simulations were developed to verify the experimental results. The FE results evince good agreement with the experimental results in terms of the ultimate axial loads, deformations, and modes of failure.
For the time being, the cold-formed sections are widely used due to their simple manufacturing and construction processes. To be feasible, the strength of cold-formed columns should be determined based on their post-buckling behavior. Post-buckling relations are cumbersome and need design aids similar to those of American Iron and Steel Institute (AISI) to be applicable. These design aids have been developed to sections and materials other than those available in the local market. Therefore, this paper tries to develop a general finite element model to simulate the postbuckling behavior of cold-formed steel columns. Shell element has been used to discretize the web, flanges, and lips of the column. A linear bucking analy
... Show MoreThis research deals with study and analyze the industrial buyer behavior and identified its objectives by determine the nature of selection the members of the purchases committees and determine the role of the purchases committees to provide requirements of the educational and scientific process and knowledge Impact of the factors ( environmental , organizational , social , and individual ) and positions of the purchase in the behavior of the members of the purchases committees and starts the importance of research in it helps university administrations in the correct choice for the members of the purchases committees and gives a picture of professional conduct professional who is supposed to b
... Show MoreThe Feedback Concept has been spread as an organized trend for scientific research since it has a significant importance for human behavior and how it has been directed and controlled by the individual, feedback has numerous definitions but the simplest definition is; feedback is the information received by the individual from the output of his behavior, In addition to the mutual relationship between the individual and the stimulation that provide him with the basic information by the biological control of his behavior, Since feedback cannot be accomplished without receiving information from the inner and outer environment, the biological and physiological information become the ma
... Show MoreIn-vitro biological activities of the free new H4L ( indole-7-thiocarbohydrazone) ligand and its Ni(II), Pd(II) , Pt(II), Cu(II), Ag(I), Zn(II) and Cd(II) complexes are screened against two cancerous cell lines, that revealed significant activity only for [Cu2Cl2(H4L)2(PPh3)2] after 72 h treatment by the highest tested concentrations. The Copper(I) complex was characterized by X-ray Crystallography and the NMR spectra, whereas it has been confirmed to have momentous cytotoxicity against ovarian, breast cancerous cell lines (Caov-3, MCF-7). The apoptosis-inducing properties of the Cu(I) complex have been investigated through fluorescence microscopy visualization, DNA fragmentation analysis and propidium iodide flow cytometry.
The Maxwell equations have been formulated for a composite slab waveguide at x-band wave propagation. The eigenvalues of the system equations are obtained by using MATLAB program. These eigenvalues are used to obtain the wave propagation constant and a number of modes inside the slabs. A good correspondence was seen between the number of modes and the cut off thickness. The parameter that affects the performance of waveguide is the slab thickness. The propagation constant is usually adopted to characterize this type of waveguide and show how the cutoff frequency of the mode in the slab is increased dramatically by decreasing the frequency.
Our study focused on lower modes, the results for the transmission coefficient are then used to
In the present study, an attempt has been made to experimentally investigate the flexural performance of ten simply supported reinforced concrete gable roof beams, including solid control specimen (i.e., without openings) and nine beams with web openings of different dimensions and configurations. The nine beams with openings have identical reinforcement details. All beams were monotonically loaded to failure under mid-span loading. The main variables were the number of the created openings, the total area of the created openings, and the inclination angle of the posts between openings. Of interest is the load-carrying capacity, cracking resistance and propagation, deformability, failure mode, and strain development that represent the behav
... Show More