This study aimed to evaluate the reservoir petrophysical properties (porosity, water saturation, and permeability) for optimal flow unit assessment within the Sadi Formation. Utilizing open hole logging data from five wells, the Sadi formation was divided into two rock units. The upper unit (A) is 45-50 meters thick, mainly consisting of limestone, mainly consisting of shaly limestone at the lower part. The lower unit (B) has a thickness of approximately 75-80 meters and is primarily composed of limestone, further subdivided into three subunits (B1, B2, B3). The average water resistivity is 0.04 ohm-m, and the average mud filtrate resistivity is 0.06 ohm-m. The Pickett plot was utilized to determine Archie parameters (tortuosity factor=1, cementation factor= 2, saturation exponent = 1.94). Petrophysical properties were determined through a sequence of operations involving lithology identification, shale volume estimation, porosity calculation, water saturation calculation, and permeability estimation. Lithology was identified using neutron, density and sonic logs with (N-D, M-N) cross plots, which show that the Sadi Formation is mainly limestone. The Gamma ray log was employed to estimate the shale volume of the Sadi Formation using the Larionov equation of old rock, resulting in a shale volume of 7%-58%. After calculating porosity using neutron-density logs, the resulting porosity matched the core porosity. Archie equation was used to calculate the formation’s water saturation, with water saturation less than 0.48 (cut-off) obtained in B1, B2 and B3 units. Finally, the formation permeability was estimated using the Flow Zone Indicator method, which provided a good match with core permeability. Porosity and water saturation were estimated with depth using Techlog software. The best hydrocarbon-holding unit is B2, which has the highest porosity, lowest water saturation, and the best permeability, with a thickness of 20.1 meters. As a result of this study, core plug analysis and well logging data identified eight distinct units in the Sadi Formation. There are three flow sub-units in upper Sadi (B1), three flow sub-units in Sadi (B2) and two sub-units in Sadi (B3). Additionally, it has been found that the marl rock unit (A2) separates the water-bearing zone (A1) from the oil-bearing zone (B).
A 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The to
... Show MoreThe Central Marshes are one of southern Iraq's most important wetlands and ecosystems. A study on evaluating soil quality and water quality in terms of chemical properties at certain sites in the southern Iraqi Central Marshes has been conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops. Soil and water samples were collected from 15 sites and transferred to the laboratory. In the lab, the following parameters were determined: electrical conductivity (EC), total dissolved salts (TDS), organic materials (OM), pH, gypsum, and total sulfate content (SO3). The tests conducted on the samples indicated that it could be said that the soil of the Central Marshes
... Show MoreRock failure during drilling is an important problem to be solved in petroleum technology. one of the most causes of rock failure is shale chemical interaction with drilling fluids. This interaction is changing the shale strength as well as its pore pressure relatively near the wellbore wall. In several oilfields in southern Iraq, drilling through the Tanuma formation is known as the most challenging operation due to its unstable behavior. Understanding the chemical reactions between shale and drilling fluid is determined by examining the features of shale and its behavior with drilling mud. Chemical interactions must be mitigated by the selection of suitable drilling mud with effective chemical additives. This study is describing t
... Show MoreABSTRACT:. The Lower Cretaceous Zubair formation is comprised of sandstones intercalated with shale sequences. The main challenges that were encountered while drilling into this formation included severe wellbore instability-related issues across the weaker formations overlaying the reservoir section (pay zone). These issues have a significant impact on well costs and timeline. In this paper, a comprehensive geomechanical study was carried out to understand the causes of the wellbore failure and to improve drilling design and drilling performance on further development wells in the field. Failure criteria known as Mogi-Coulomb was used to determine an operating mud weight window required for safe drilling. The accuracy of the geomechanical
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreMishrif Formation was deposited during The Cenomanian-Early Turonian, which has been studied in selected Tuba and Zubair OilFields, these wells (TU-5, TU-24, TU-40, ZB-41, ZB-42, and ZB-46) are located within Mesopotamian basin at southern Iraq and considered as a major carbonate reservoir in Iraq and the Arabian Gulf. The palaeontological investigations mainly depending on benthonic foraminifera of the studied wells of Tuba and Zubair Oilfields in Mishrif Formation, twenty-four species belonging to fourteen genera are recognized of benthonic foraminifera, which has been recognized through this study, especially benthonic foraminiferal, indicating four zones as follows:
The central marshes are one of the most important wetlands/ecosystems in the southern area of Iraq. This study evaluates the bed soil's mechanical, physical, and chemical properties at certain southern Iraqi central marshes sites. This was conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops and for construction purposes. Soil samples were collected from 15 sites at 10-100 cm depth. Hence, numerous parameters were determined: index properties, unconfined compressive strength, direct shear strength, consolidation, texture, and sieve analysis, water content, specific gravity, dry density, permeability, pH, total soluble salts (TSS), organic materials (OM) and total
... Show MoreThis paper displays a survey about the laboratory routine core analysis study on ten sandstone core samples taken from Zubair Reservoir/West Quarna Oil Field. The Petrophysical properties of rock as porosity, permeability, grain's size, roundness and sorting, type of mineral and volumes of shales inside the samples were tested by many apparatus in the Petroleum Technology Department/ University of Technology such as OFITE BLP-530 Gas Porosimeter, PERG-200TM Gas Permeameter and liquid Permeameter, GeoSpec2 apparatus (NMR method), Scanning Electron Microscopy (SEM) and OFITE Spectral Gamma Ray Logger apparatus. By comparing all the results of porosity and permeability measured by these instruments, it is clear a significant vari
... Show MoreUnconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute
... Show MoreThis research was aimed to determine the petrophysical properties (porosity, permeability and fluid saturation) of a reservoir. Petrophysical properties of the Shuiaba Formation at Y field are determined from the interpretation of open hole log data of six wells. Depending on these properties, it is possible to divide the Shuiaba Formation which has thickness of a proximately 180-195m, into three lithological units: A is upper unit (thickness about 8 to 15 m) involving of moderately dolomitized limestones; B is a middle unit (thickness about 52 to 56 m) which is composed of dolomitic limestone, and C is lower unit ( >110 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water
... Show More