ABSTRACT: Oxadiazole ring is a heterocyclic molecule with an oxygen and two nitrogen atoms spread throughout its five-membered structure. There are four different isomers that have been discovered, Because of their wide applications in a range of sectors, including medications . Some of these biological activity are; anticonvulsant capacity, anticancer as well, antibacterial, antiviral, antifungal, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and anti-inflammatory, are just some of the therapeutic uses that have drawn attention to drug candidates containing an oxadiazole moiety. This review, we will examine the various methods of oxadiazole synthesis. The molecular docking of some oxadiazole compounds has been studied to investigate the active derivatives and to evaluate their activity. The synthesis of the oxadiazole ring has sparked a lot of attention since then. A large number of oxadiazole derivatives, as well and methods, were reported New antimicrobial drugs have been developed from a number of different areas in recent years in an effort to reduce the prevalence of drug-resistant bacteria. Furthermore, this review touches upon the importance of structural modification in fine-tuning the biological activities of 1,3,4-oxadiazole derivatives. By altering the substituents and the position of functional groups, researchers can tailor the pharmacological properties to target specific diseases or conditions, making them highly versatile and attractive in drug discovery.
In this research, we highlight the most important research related to the mixed ligand complexes of the drug trimethoprim (TMP), and for the past 7 years where this drug has been used as a chelating ligand and gives stability to the complexes with ions of metal elements where these complexes, prepared and diagnosed, and for some research the bacterial activity was studied against different types of bacteria.
Interface bonding between asphalt layers has been a topic of international investigation over the last thirty years. In this condition, a number of researchers have made their own techniques and used them to examine the characteristics of pavement interfaces. It is obvious that test findings won't always be comparable to the lack of a globally standard methodology for interface bonding. Also, several kinds of research have shown that factors like temperature, loading conditions, materials, and others have an impact on surface qualities. This study aims to solve this problem by thoroughly investigating interface bond testing that might serve as a basis for a uniform strategy. First, a general explanation of how
... Show MoreBackground: The aim of this study was to evaluate and compare the apical microleakage around retrograde cavities prepared with ultrasonic technique and filled with (Biodentineâ„¢) Materials and methods: 40 extracted single rooted human permanent maxillary teeth with mature apices were selected. The roots were prepared chemo-mechanically using k-files with crown-down technique and then obturated with lateral condensation gutta-percha technique. Teeth were divided into four main groups according to the cavity preparation method either manual or ultrasonic technique: Group A (n=10): A class I retrograde cavity at root end was prepared with traditional handpeice equipped and placement of Biodentine with manual condensation. Group B (n=10):
... Show MoreBackground: The aim of this study was to evaluate and compare the apical microleakage around retrograde cavities prepared with ultrasonic technique and filled with (Biodentineâ„¢) Materials and methods: 40 extracted single rooted human permanent maxillary teeth with mature apices were selected. The roots were prepared chemo-mechanically using k-files with crown-down technique and then obturated with lateral condensation gutta-percha technique. Teeth were divided into four main groups according to the cavity preparation method either manual or ultrasonic technique: Group A (n=10): A class I retrograde cavity at root end was prepared with traditional handpeice equipped and placement of Biodentine with manual condensation. Group B (n=10):
... Show MoreStarting from 4, - Dimercaptobiphenyl, a variety of phenolic Schiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis all analysis were performed in center of consultation in Jordan Universty.
The gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show More4,4'-(pyridine-2,6-diylbis(1,3,4-oxadiazole-5,2-diyl))bisphenol monomer (3)was synthesized from cyclization of N'2,N'6-bis(4-hydroxybenzylidene)pyridine-2,6-dicarbohydrazide (2)in the presence of bromine in glacialacetic acid. Newly five polymers (P1-P5) were synthesized from reaction bis-1,3,4-oxadiazole bisphenolmonomer with five different di acid chloride. The antibacterial activity of the synthesized polymers was screened against gram positive and gram negative bacteria. Polymers P4 and P5 exhibited significant antibacterial against all microorganisms, as well these polymers showed highest antifungal activity.
The aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystal
... Show MoreA group of amino derivatives [4-aminobenzenesulfonamide,4-amino-N¹ methylbenzenesulfonamide, or N¹-(4-aminophenylsulfonyl)acetamide] bound to carboxyl group of mefenamic acid a well known nonsteroidal anti-inflammatory drugs (NSAIDs) were designed and synthesized for evaluation as a potential anti-inflammatory agent. In vivo acute anti-inflammatory activity of the final compounds (9, 10 and 11) was evaluated in rat using egg-white induced edema model of inflammation in a dose equivalent to (7.5mg/Kg) of mefenamic acid. All tested compounds produced a significant reduction in paw edema with respect to the effect of propylene glycol 50% v/v (control group). Moreover, the 4-amino-N-methylbenzenesulfonamide derivative (c
... Show MoreThe reactions of ozone with 2,3-Dimethyl-2-Butene (CH3)2C=C(CH3)2 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides) and give a good information for the effe
... Show More