Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 400nm respectively, The dislocation density, microstrain and number of crystallites per unit surface area, decreases with increasing of thickness, while they increases with gamma radiation. From the atomic force microscope (AFM), the grain size of CdO films decrease from 96.69nm before radiation to 89.49 nm after gamma radiation and RMS roughness increases for the irradiated sample from 4.26nm to 4.8nm, increase in the surface roughness is advantages as it increases the efficiency of the CdO solar cells. The optical properties for thin CdOfilms with different thickness before and after gamma irradiation have been determined and reveals direct energy gap. It is decrease with the increase of thickness, while it is increase after gamma irradiation. These films a promising candidate for the window layer in solar cells and other possible optoelectronic application.
Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Optical detector was manufactured Bashaddam thermal evaporation technique at room temperature under pressure rays studied characteristics of reactive Scout efficiency quantitative ratio of the signal and the ability equivalent to noise
A huge potential from researchers was presented for enhancing the nonlinear optical response for materials that interacts by light. In this work, we study the nonlinear optical response for chemically prepared nano- fluid of silver nanoparticles in de-ionized water with TSC (Tri-sodium citrate) protecting agent. By the means of self-defocusing technique and under CW 473 nm blue laser, the reflected diffraction pattern were observed and recorded by CCD camera. The results demonstrate that, the Ag nano-fluid shows a good third order nonlinear response and the magnitude of the nonlinear refractive index was in the order of 10−7 cm2/W. We determine the maximum change of the nonlinear refractive index and the related phase shift for the mat
... Show MoreA single-crystalline semi-polar gallium nitride (11-22) was grown on m-plane (10-10) sapphire substrate by metal organic chemical vapor deposition. Three-step approach was introduced to investigate the grain size evolution for semi-polar (11-22) GaN. Such approach was achieved due to the optimized gallium to ammonia ratio and temperature variations, which led to high quality (11-22) oriented gallium nitride epilayers. The full width at half maximum values along (-1-123) and (1-100) planes for the overgrowth temperature of 1080°C were found to be as low as 0.37° and 0.49°, respectively. This was an indication of the enhanced coalescence and reduction in root mean square roughness as seen by atomic force microscopy. Surface analysi
... Show More