In most Reinforced Concrete (RC) buildings, the cross-section size of rectangular columns that conventionally used in these structures is larger than the thickness of their partitions. Consequently, a part of the column is protruded out of the wall which has some architectural disadvantages. Reducing the column size by using high strength concrete will result in slender column, thus the stability problem may be occurred. The stability problem is difficult to be overcome with rectangular columns. This paper study the effectiveness of using new types of columns called Specially Shaped Reinforced Concrete (SSRC) columns. Besides, the use of SSRC columns provides many structural advantage
This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentrici
... Show MoreThis paper studies the behavior of axially loaded RC columns which are confined with carbon fiber reinforced polymers’ sheet (CFRP) and steel jackets (SJ). The study is based on twelve axially loaded RC columns tested up to failure. It is divided into three schemes based on its strengthening type; each scheme has four columns. The main parameters in this study were the compressive strength of the concrete and steel reinforcement ratio. Furthermore, the results of the experimental test showed a substantial enhancement in the column's load-carrying capacity. When compared to the original columns, the CFRP sheet had a significant effect on improving the ductility of the column by increasing the axial deformation by about 59.2 to 95.7
... Show MoreThe present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness
Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square c
... Show MoreThe idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column