It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
This paper deals with the subject of demarcating as appropriate scientific techniques to rationalize consumption and to control segments of the society for the technical conduct of its handling of the product depending on the mix of elements (product and the volume of demand, Price, promotion and distribution), but inverse manner designed to adjust the working condition of balance between supply and demand and to ensure that rates continue in the marketing process properly, and therefore the research aims to shed light on some of the practices that reflect the Demarketing techniques, As well as the statement of the reality of attitudes towards the practice of those techniques through a sample survey of officials in Baghdad company for so
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreType 2 diabetes mellitus which abbreviate as T2DM is a complex endocrine and metabolic disorder arisingfrom genetic and environmental factors interaction which in turn induce various degrees of insulin functionalalteration on peripheral tissues. Globally, T2DM has develop into a public health problem. Therefore, Thestudy included (75) patients(37 female and 38 males) suffering from T2DM who visit al-kadhimiya teachinghospital with age range 20-80 years and (70) as healthy controls with age range 20-70 years. All studiedgroups were evaluated CMV IgG by ELISA,B. urea, S. Creatinine, cholesterol and triglyceride the resultsshowed that B.urea, S.creatinine and serum cholesterol showed a non-significant differences between studiedgroup,
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreThe importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h
... Show MoreThe research aims to shed light on the possibility of measuring the intellectual capital in the Iraqi insurance company using accounting models, as well as disclosing it in the financial statements of the company, where human capital was measured using the present value factor model for discounted future revenues and the intellectual value-added factor model for measuring structural capital It was also disclosed in the financial statements based on the theory of stakeholders. The research problem lies in the fact that the Iraqi insurance company does not carry out the process of measuring and disclosing the intellectual capital while it is considered an important source for the company’s progress in the labor market recently. T
... Show More