Preferred Language
Articles
/
JGEHKJkBdMdGkNqj3xQt
An Intelligent Cognitive System Design for Mobile Robot based on Optimization Algorithm
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
Design of a Differential Chaotic on-off keying communication system
...Show More Authors

Among the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Civil Engineering Journal
Time-Cost-Quality Trade-off Model for Optimal Pile Type Selection Using Discrete Particle Swarm Optimization Algorithm
...Show More Authors

The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but  in this paper, the researcher proposed five pile types, one of them is not a traditional, and   developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t

... Show More
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Jan 13 2020
Journal Name
Day 3 Wed, January 15, 2020
Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study
...Show More Authors
<p>Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t</p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Computers, Materials &amp; Continua
An Optimal Method for Supply Chain Logistics Management Based on Neural Network
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Ieee Transactions On Intelligent Transportation Systems
Real-Time Intersection-Based Segment Aware Routing Algorithm for Urban Vehicular Networks
...Show More Authors

High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination

... Show More
View Publication
Scopus (69)
Crossref (62)
Scopus Clarivate Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Modified BFGS Update (H-Version) Based on the Determinant Property of Inverse of Hessian Matrix for Unconstrained Optimization
...Show More Authors

The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never  approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Sep 15 2020
Journal Name
Arab World English Journal
A Cognitive-Semantic Analysis of Preposition on: An Experimental Study at University of Baghdad
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization and Prediction of Process Parameters in SPIF that Affecting on Surface Quality Using Simulated Annealing Algorithm
...Show More Authors

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Dual Stages of Speech Enhancement Algorithm Based on Super Gaussian Speech Models
...Show More Authors

Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression alg

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref