The development of advanced lithium-sulfur (Li-S) batteries has gathered noteworthy attention due to their high theoretical energy density and potential for use in next-generation energy storage systems. This study focuses on the thermodynamic and dynamic analysis of advanced Li-S battery electrolytes using spectroscopic methods. By employing techniques such as nuclear magnetic resonance (NMR), Raman spectroscopy, and infrared (IR) spectroscopy, the research explores the interaction mechanisms between lithium ions and sulfur compounds within various electrolyte formulations. The results provide insights into the solvation structures, ion transport properties, and the stability of intermediates, which are significant for improving the performance and lifespan of Li-S batteries, clearing the way for the development of more efficient and durable Li-S battery systems.
The rheological behavior among factors that are present in Stokes law can be used to control the stability of the colloidal dispersion system. The felodipine lipid polymer hybrid nanocarriers (LPHNs) is an interesting colloidal dispersion system that is used for rheological characteristic analysis. The LPHNs compose of polymeric components and lipids. This research aims to prepare oral felodipine LPHNs to investigate the effect of independent variables on the rheological behavior of the nanosystem. The microwave-based technique was used to prepare felodipine LPHNs (H1-H9) successfully. All the formulations enter the characterization process for particle size and PDI to ascertain the colloidal properties of the prepared nanosystem t
... Show MorePlasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
Ag2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreThe main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equilibr
... Show MoreThe main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equ
... Show MoreThe adsorption of Malonic acid, Succinic acid, Adipic acid, and Azelaic acid from their aqueous solutions on zinc oxide surface were investigated. The adsorption efficiency was investigated using various factors such as adsorbent amount, contact time, initial concentration, and temperature. Optimum conditions for acids removal from its aqueous solutions were found to be adsorbent dose (0.2 g), equilibrium contact time (40 minutes), initial acids concentration (0.005 M). Variation of temperature as a function of adsorption efficiency showed that increasing the temperature would result in decreasing the adsorption ability. Kinetic modeling by applying the pseudo-second order model can provide a better fit of the data with a greater correla
... Show More