Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding between the 3 MPA ligands and the QDs surface. The XRD results revealed that the synthesized QDs have two crystal structures, wurtzite and cubic zinc blend. FESEM results confirmed that the NPs have a spherical shape with an average diameter of nearly 33.85 nm. TEM analysis confirmed the particle's near sphericity, with an average diameter of around 49.33 nm. The sudden increase in temperature led to increase the particle size. It was found that ligand addition, maintaining the solution's acidity, and autoclaving the material enhanced quantum confinement.
Carbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
In this work ,glass-metal apparatus was designed and manufactured which used for preparing ahigh purity uranium. The reaction is simply take place between iodine vapour and uranium metal at 500C in closed system to form uranium tetra iodide which is decomposed on hot wire at high temperature around 1100C. Also another apparatus was made from Glass and used for preparing ahigh purity of UI4 more than 99.9% purity.
ABSTRACTBackground: cochlear implants are electronic devices that convert sound energy into electrical signals to stimulate ganglion cells and cochlear nerve fibers. These devices are indicated for patients with severe to profound sensorineural hearing losses who receive little or no benefit from hearing aids. The implant basically takes over the function of the cochlear hair cells. The implant consists of external components (microphone, speech processor and transmitting coil) and internal components (receiver stimulator and electrode array). The implant is inserted via a trans mastoid facial recess approach to the round window and scala tympani.Objectives: to determine the effectiveness and safety of non fixation method in cochlear imp
... Show MoreIn this research, a selection of some mineral water was selected on the basis of being the most marketed by the owners of shops in Najaf province, with six types, where daily samples of this water were taken by 50 ml for two months from (1/11/2018 -1/1/2019). The following ions concentrations were measured (Br-, Cl-, F-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+), pH and the electrical conductivity were measured and the results were compared with the allowable rates according to the international organizations. It was noted that they conform to international and Iraqi standards.
In the current work, the mixing ratios ( 𝛿 ) of gamma transitions were calculated from energy levels in the isotopes neodymium 60𝑁𝑎 142−150 populated in the 60Nd 142− 150 (n, n ˊγ) 60Nd 142− 150 using the 𝑎2 ratio method. We used the experimental coefficient (𝑎2 ) for two γ-transitions from the initial state itself, the statistical tensor 𝜌2(𝐽𝑖), associated with factor 𝑎2 , would be the same for the two transitions. The results obtained are in good agreement or within the experimental error with -those previously published. And existing contradictions resulting from inaccuracies in the empirical results of previous work. The current results confirm that the , 𝑎2 − method is used to calculate th
... Show MoreThis study reports the formation, characterisation and biological evaluation of a Schiff base ligand and its corresponding metal complexes. The Schiff base ligand (HL) was prepared through a condensation reaction involving isonicotinohydrazide and N'-((1R,2R,4R,5S, E)-2,4-bis(4-chlorophenyl)-3-azabi cyclo[3.3.1]nonan-9-ylidene) isonicotinohydrazide (M) in EtOH solvent and (3-5) drops of conc. HCl. The interaction of HL with selected metal chlorides including Mn(+2), Co(+2), Ni(+2), Cu(+2) and Zn(+2) in a 2:1 (L:M) mole ratio resulted in the synthesis of complexes with the general formula [M(HL)Cl2] (where: M = Mn(+2),Co(+2) and Ni(+2)) and [M`(HL)Cl2] (where M` = Cu(+2) and Zn(+2)). The characterisation of the prepared compounds w
... Show MoreThe synthesis of the bisaldehyde ligand 2-(1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)malonaldehyde (B) and its coordinated compounds with Cr(III), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) ions are reported. The synthetic route of B was completed by adopting the Vilsmeier-Haack reaction. This was based on the mixing of 1,1,2-trimethyl-1H-benzo[e]indole with phosphoryl trichloride and N, N-dimethylformamide (anhydrous) that gave the aminomethylenemalondialdehyde. The use of POCl3 and DMF was aimed to give the Vilsmeier-Haack intermediate, which was kept at 5°C and then heated with stirring at 85°C. The addition of an aqueous NaOH solution (35%) to the reaction mixture resulted in the isolation of B. The monomeric coordinated comp
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
The application of low order panel method with the Dirichlet boundary condition on complex aircraft configuration have been studied in high subsonic and transonic speeds. Low order panel method has been used to solve the case of the steady, inviscid and compressible flow on a forward swept wing – canard configuration with cylindrical fuselage and a vertical stabilizer with symmetrical cross section. The aerodynamic coefficients for the forward swept wing aircraft were calculated using measured wake shape from an experimental work on same model configuration. The study showed that the application of low order panel method can be used with acceptable results