The experiment was carried out at the Field Crops Research Station, College of Agricultural Engineering Sciences - University of Baghdad in Jadiriyah, with the aim of evaluating the performance of partial diallel hybrids and inbred lines of maize and estimating general combining ability(GCA), specific combining ability (SCA) and some genetic parameters. The experiment was carried out in two seasons, spring and fall 2020. Eight inbred lines of maize were used in the study (BI9/834, BSW18, LW/5 L8/844, ZA17W194, Z117W, ZI17W9, ZI7W4), numbered (1,2,3,4,5,6,7,8), It was sowed in the spring season and entered into a cross-program according to a partial diallel crossing system to obtain twelve partially cross-hybrids, and it was compared with its eight parents in a comparison experiment in the fall season using a Randomized Complete Block Design (RCBD) with split plots arrangement with three replication. The plant densities of 70 and 90 thousand plants ha-1 represented the main plots, while the partial diallel hybrids and their parents represented the secondary plots. The results of the study showed that the ratio between GCA and SCA) GCA/SCA) It was more than 1 for yield traits, ear length, number of rows and number of row grains in both low and high densities, which indicates the control of the additive genetic action on these traits. While the ratio was less than one for the traits of the ear diameter under the low density, which indicates the control of dominance genes on this trait in the mentioned density, while the trait of the number of ear grains, the ratio between the general and specific combining abilities was less than one in the high density. Inbred line 8 had the highest effect for the general ability to combine under low density, which amounted to 11.075, while inbred line 2 was superior by giving the highest effect to the general ability to combine at low density, which amounted to 17.80, followed by inbred 8.
In this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreIntroduction and Aim: Cancers are a complex group of genetic illnesses that develop through multistep, mutagenic processes which can invade or spread throughout the body. Recent advances in cancer treatment involve oncolytic viruses to infect and destroy cancer cells. The Newcastle disease virus (NDV), an oncolytic virus has shown to have anti-cancer effects either directly by lysing cancer cells or indirectly by activating the immune system. The green fluorescent protein (GFP) has been widely used in studying the anti-tumor activity of oncolytic viruses. This study aimed to study the anticancer effect of a recombinant rNDV-GFP clone on NCI-H727 lung carcinoma cell line in vitro. Materials and Methods: The GFP gene was inserted t
... Show MoreBackground: Due to the variations in tooth anatomy and size among different populations, this study aimed to compare the mesiodistal width of primary second molars in Iraqi children with the mesiodistal width of stainless-steel crowns from different companies. Materials and Methods: This cross-sectional study was conducted on 220 intact maxillary and mandibular primary second molars selected from boys and girls’ Iraqi children aged 8-9 years collected from different primary schools in Baghdad city. The mesiodistal dimensions of the selected teeth and the available maxillary and mandibular stainless-steel crowns from three different companies were measured by using a 3-D scanner, and then the whole measurements were calculated usin
... Show MoreLow-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d
... Show MoreRestoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [
This paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular colu
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show More