The experiment was carried out at the Field Crops Research Station, College of Agricultural Engineering Sciences - University of Baghdad in Jadiriyah, with the aim of evaluating the performance of partial diallel hybrids and inbred lines of maize and estimating general combining ability(GCA), specific combining ability (SCA) and some genetic parameters. The experiment was carried out in two seasons, spring and fall 2020. Eight inbred lines of maize were used in the study (BI9/834, BSW18, LW/5 L8/844, ZA17W194, Z117W, ZI17W9, ZI7W4), numbered (1,2,3,4,5,6,7,8), It was sowed in the spring season and entered into a cross-program according to a partial diallel crossing system to obtain twelve partially cross-hybrids, and it was compared with its eight parents in a comparison experiment in the fall season using a Randomized Complete Block Design (RCBD) with split plots arrangement with three replication. The plant densities of 70 and 90 thousand plants ha-1 represented the main plots, while the partial diallel hybrids and their parents represented the secondary plots. The results of the study showed that the ratio between GCA and SCA) GCA/SCA) It was more than 1 for yield traits, ear length, number of rows and number of row grains in both low and high densities, which indicates the control of the additive genetic action on these traits. While the ratio was less than one for the traits of the ear diameter under the low density, which indicates the control of dominance genes on this trait in the mentioned density, while the trait of the number of ear grains, the ratio between the general and specific combining abilities was less than one in the high density. Inbred line 8 had the highest effect for the general ability to combine under low density, which amounted to 11.075, while inbred line 2 was superior by giving the highest effect to the general ability to combine at low density, which amounted to 17.80, followed by inbred 8.
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
In this study, a 3 mm thickness 7075-T6 aluminium alloy sheet was used in the friction stir welding process. Using the design of experiment to reduce the number of experiments and to obtain the optimum friction stir welding parameters by utilizing Taguchi technique based on the ultimate tensile test results. Orthogonal array of L9 (33) was used based on three numbers of the parameters and three levels for each parameter, where shoulder-workpiece interference depth (0.20, 0.25, and 0.3) mm, pin geometry (cylindrical thread flat end, cylindrical thread with 3 flat round end, cylindrical thread round end), and thread pitch (0.8, 1, and 1.2) mm) this technique executed by Minitab 17 software. The results showed th
... Show MoreThe extraction process of chlorophyll from dehydrated and pulverized alfalfa plant were studied by percolation method. Two solvent systems were used for the extraction namely; Ethanol-water and Hexane-Toluene systems . The effect of circulation rate, solvent concentration, and solvent volume to solid weight ratio were studied. In both ethanol water, and Hexane-Toluene systems it appears that solvent concentration is the most effective variable.
This study presents a rapid, sensitive, and straightforward approach to measure chlorpheniramine maleate (CPM) by using turbidity CFIA. The method involves CPM reacting with sodium nitroprusside (Nitropress) to produce a pale white precipitate. The NAG-SSP-5S1D analyzer was used to measure turbidity at 0°–180° angle to detect the attenuation of incident light as a result of collision on the surfaces of the precipitate particles. The linear range of CPM measurements was between 0.008 and 11 m.mol/L, with correlation coefficient of 0.9983 and R2% = 99.65. The limit of detection was determined to be 0.0328 µg/sample from the lowest concentration in the calibration curve, and the repeatability of the method (RSD%) was less than 0.4% (n = 6
... Show MoreThe drug promethazine hydrochloride (PRZH) forms with rhodium (II) a colored chelate (?max = 472 nm) complex at (pH = 2.1) which is extractable with benzyl alcohol as organic solvent. Under the appropriate experimental conditions a calibration plot was set up from which some analytical parameter were derived and deduced by regression. Standard addition procedure was also adopted. It has been estimated that the concentration of the drug PRZH to be 24.89 mg per unit and 24.19 mg per unit for both calibrations. Under optimal conditions, the developed method has been achieved the following characteristics: LDR (30 – 150 µg ml-1 ) PRZH , RSD % ( 0.6 – 2.47 ) , sandell sensitivity( 0.0844 µg. cm -2 ) , LOD ( 1.66 µgml-1 ) , recovery
... Show MoreA field experiment was conducted in an agricultural field in Al-Hindia district, Karbala governorate in a silty clay soil during the year 2020. The research included a study of two factors, the first is the depth of plowing at two levels, namely 13 and 20 cm, which represented the main blocks. The second is the tire inflation pressure at two levels, namely (70 and 140 kPa), which represented the secondary blocks. Slippage percentage, field efficiency, leaf area, and 300 grain weight were studied. The experiment was carried out using a split-plot system under a Randomized complete block design, at three replications. The tillage depth of 13 cm exceeds/transcend by giving it the least slippage of (11.01%), the highest field efficiency of (50.
... Show MoreWind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc
... Show More