In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performance measures are used as a criterion to decide which classifier is the best one to detect the images with high accuracy. Eventually, the simulation results show that each classifier detect the damage/no damage image with different performance measures and then makes it easy to select the best one.
In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreIdentifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit
... Show MoreMost below-knee prostheses are manufactured in Iraq without considering the fast progress in smart prostheses, which can offer movements in the desired directions according to the type of control system designed for this purpose. The proposed design appears to have the advantages of simplicity, affordability, better load distribution, suitability for subjects with transtibial amputation, and viability in countries with people having low socio-economic status. The designed prosthetics consisted of foot, ball, and socket joints, two stepper motors, a linkage system, and an EMG shield. All these materials were available in the local markets in Iraq. The experimental results showed t
... Show MoreContent-based image retrieval has been keenly developed in numerous fields. This provides more active management and retrieval of images than the keyword-based method. So the content based image retrieval becomes one of the liveliest researches in the past few years. In a given set of objects, the retrieval of information suggests solutions to search for those in response to a particular description. The set of objects which can be considered are documents, images, videos, or sounds. This paper proposes a method to retrieve a multi-view face from a large face database according to color and texture attributes. Some of the features used for retrieval are color attributes such as the mean, the variance, and the color image's bitmap. In add
... Show MoreDocument clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research wor
... Show More