Preferred Language
Articles
/
JBYKH4oBVTCNdQwCyJG-
Preliminary Test Bayesian –Shrunken Estimators for the Mean of Normal Distribution with Known Variance
...Show More Authors

Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution
...Show More Authors

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 02 2011
Journal Name
Education College Journal/al-mustansiriyah
Double Stage Shrinkage Estimators of Two Parameters Generalized Rayleigh Distribution
...Show More Authors

Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
The Bayesian Estimation for The Shape Parameter of The Power Function Distribution (PFD-I) to Use Hyper Prior Functions
...Show More Authors

The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Proposed Entropy Loss function and application to find Bayesian estimator for Exponential distribution parameter
...Show More Authors

The aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
Mathematical Modeling of Compaction Curve Using Normal Distribution Functions
...Show More Authors

Compaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.

In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.

The results showed very good correlation between the values obtained from some publ

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes est

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B

... Show More
Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication
Crossref