In this paper, the effect of sulfur substitution by arsenic on the structural, optical properties of thin films of the trivalent chalcogenide Se66S44-xAsx at different concentrations (where x = 0, 8, 16, and 24 at %) was studied. Thin films with a thickness of (300±10 nm) were prepared using thermal evaporation of bulk samples. Structural examinations were performed using XRD and AFM techniques. All the studied film samples were amorphous in structure and the intensity of the crystalline parts was high in the range of 10-40. Also, in Atomic Force Microscopy (AFM). It was found that increasing the concentration of arsenic affects the structural parameters such as surface roughness, particle density, and average grain size. As the arsenic element increased by 0.24, the grains became more regular, and the particle density increased. UV-Vis measurements reveal that the prepared films' absorption in the spectral wavelength range from 200 to 1100 nm. It was found that increasing the arsenic content led to a change in the absorbance of the films. The optical energy gap of Se66S44-xAsx thin films was determined and it was found that increasing arsenic content affected the energy gap differently as it changed within the range (2.35-2.19 eV). The energy gap increased at concentrations of (8, 16%) while the energy gap decreased at concentrations of 24%.
The effect of 0.662MeV gamma radiation on the optical properties of the CdTe thin films was studied. 300nm thickness of CdTe samples were irradiated with doses (10, 20, 30,60krad) in room temperature. The absorption spectra for all the samples were recorded using UV- Visible spectrometer in order to calculate the energy gap, width of localized states and optical constants(refractive index, extinction coefficient, real and imaginary parts of dielectric constant). The optical energy gap was found to decrease from (1.53 to 1.48 eV), while the width of localized states increased from (1.34 to 1.49 eV) with the increasing of radiation dose. The behavior of energy gap with the irradiation dose makes the material a good candidate for dosimetry
... Show MorePolyaniline Multi walled Carbon nanotubes (PANI/MWCNTs) nanocomposite thin films have been prepared by non-equilibrium atmospheric pressure plasma jet on glass substrate with different weight percentage of MWCNTs 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-55 nm and length - - 55 55 μm. the nanocomposite thin films were characterized by UV-VIS, XRD, FTIR, and SEM. The optical studies show that the energy band gap of PANI/MWCNTs nanocomposites thin films will be different according to the MWCNTs polyaniline concentration. The XRD pattern indicates that the synthesized PANI/MWCNTs nanocomposite is amorphous. FTIR reveals the presence of MWCNTs nanoparticle embedded into polyaniline. SEM surface images show that the MWCNT
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreThin films of CdTe were prepared with thickness (500, 1000) nm on the glass substrate by vacuum evaporation technique at room temperature then treated different annealing temperatures (373,473,and 573)K for one hour. Results of the Hall Effect and the electrical conductivity of (I-V) characteristics were measured in darkness and light.at different annealing temperature results show that the thin films have ability to manufacture solar cells, and found that the efficient equal to (2.18%) for structure solar cell (Algrid / CdS / CdTe /glass/ Al) and the efficient equal to (1.12%) for structure solar cell (Algrid / CdS / CdTe /Si/ Al) with thick ness of (1000) nm with CdTe thin films at RT.
In this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreSb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show More