Two series of Schiff Bases [VI]n and thiazolidin-4-one derivatives[VII]n were synthesized by many steps starting from cyclization of 4- hydroxyacetophenon with thiourea in iodine to yield 1,3-thiazole compound which was reacted with pentoxy bromide in anhydrous potassium carbonate to converted compound[II] and this reacted with Phenol to yield azo compound[III]. The azo compound reacted with ethyl chloro acetate in basic medium to get a new easter compound[IV] which is converted to their acid hydrazid[V]. The later compound condensation with n-alkoxy benzaldehyde to give new Schiff bases[VI]n . Imine group undergoes addition cyclization with thioglycolic acid to get thiazolidinone compounds[VII]n .Also, two new series of Schiff Bases [XII]n and their thiazolidin-4-one derivatives[XIII]n were synthesized by using the same steps given for synthesis Schiff bases [VI]n and thiazoidinone [VII]n except using 4- aminoacetophenon instead of 4- hydroxyacetophenon(see scheme 2) .The synthesized compounds were characterized by melting points , FTIR ,C.H.N.S analysis , 1HNMR and Mass spectroscopy (of some of them)
Introduction: Articaine was developed in 1969, with reported advantages which are increased potency, increased duration of its anesthetic effect and superior diffusion through bony tissue. The effectiveness of using 4% articaine infiltration for extraction of mandibular molar teeth in comparison to 2% lidocaine inferior alveolar nerve block is not settled yet. Aim: The aim of this study was to evaluate the effectiveness of using 4% articaine infiltration for extraction of mandibular molars by comparing it to the use of 2% lidocaine inferior alveolar nerve block in terms of success, the volume of local anesthetic agents and the pain experienced during the procedure. Materials and methods: A prospective randomized controlled study included
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreAbstract The Synthesis in good yields of some new 1,8-Naphthyridine derivatives (1-9) and characterized on the basis of IR and 1H NMR spectra data. The compounds (1) and (6) were utilized as a starting material for the preparing of these compounds.
The Mannich base ligand was synthesized in an ethanol medium through a condensation reaction of 2-mercaptobenzimidazole and ciprofloxacin at room temperature. Subsequently, several metal complexes of this ligand were prepared. To characterize both the base ligand and the metal complexes, various techniques were employed, including elemental analysis, FT-IR spectroscopy, UV-Vis spectroscopy, molar conductivity measurements, magnetic moment determination, and melting point analysis. The results were shown that the metal complexes formed have the formula [Cr(L)2Cl2] Cl.H2O and [Rh(L)2(H2O)2] Cl3.H2O, where L= mannich base ligand. Based on spectroscopic analytical, coordination with metal ions involves the 'N' donor atom of mannich base
... Show MoreTo synthesize new hydrazone derivatives of naproxen with enhanced anti-inflammatory activity and devoid the ulcerogenic side effects. Hydrazones were synthesized by conjugation of naproxen hydrazide with seven natural and synthetic aldehyde and ketone by using glacial acetic acid as catalyst. The synthesis has been carried out following simple methodology in excellent isolated yields.The structure of the synthesized derivatives has been characterized by elemental microanalysis (CHN), FTIR Spectroscopy, and other physicochemical properties.The anti- inflammatory activity of the synthesized compounds was evaluated in vivo using the egg-white induced edema model in rats, and the results of the biological assay was found to be comparable to Nap
... Show MoreThis study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreThe synthesis of new benzodiazepine, imidazole, isatin, maleimide, pyrimidine and 1,2,4-triazole derived from 2-amino-4-hydroxy-1,3,5-triazine, via its cyclocondensation reaction with different organic reagents, is described. FT-IR, 1H-NMR and as well as 13C-NMR spectra disclosed the structures of the precursors and heterocyclic derivatives formed.
In this work involved prepared of several new 1-cyclopentene-1,2-dicarboxylimide linked to oxadiazole and benzothiazole moiety were synthesized by two steps: The first step 2-amino-substituted-1,3,4-oxadiazoles and substituted-2-aminobenzothiazole were reaction with 1-cyclopentene-1,2-dicarboxyl anhydride producing N-( 5- substituted-1,3,4-oxadiazole-2-yl)-1-cyclopentene-1,2-dicarboxyl amic acids and N-(Substitutedbenzothiazole-2-yl)-1-cyclopentene-1,2-dicarboxyl amic acids which in turn were dehydrated in the second step via fusion method to afford he desirable N-(5-substituted-1,3,4-oxadiazole-2-yl)-1-cyclopentene-1,2-dicarboxylimides and N-(Substituted benzothiazole-2-yl)1-cyclopentene-1,2-dicarboxylimides respectively. Struct
... Show More